Vol. 22
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-05-30
Steerable Antenna Using Algorithm Based on Downhill Simplex Method
By
Progress In Electromagnetics Research C, Vol. 22, 23-34, 2011
Abstract
Electronically steerable passive array radiator (ESPAR) antennas are expected to gain prominence in the field of wireless communication, because they can be steered toward a desired signal and they can eliminate interference; in addition, they have a very simple architecture that has significantly low power consumption and are inexpensive to manufacture. In this paper, we proposed an ESPAR antenna that has fastest convergence time. The downhill simplex method is used to maximize the correlation coefficient between the received signal and the reference signal. The simulation results indicate that this antenna can be steered toward the desired signal if one signal is used; in addition, it can eliminate interference if two signals, namely, the desired signal and the delayed signal are used by automatically varying the reactance values.
Citation
Noorsaliza Abdullah Yoshihiko Kuwahara , "Steerable Antenna Using Algorithm Based on Downhill Simplex Method," Progress In Electromagnetics Research C, Vol. 22, 23-34, 2011.
doi:10.2528/PIERC11042712
http://www.jpier.org/PIERC/pier.php?paper=11042712
References

1. Harrington, R., "Reactively controlled directive arrays," IEEE Transactions on Antennas and Propagation, Vol. 26, No. 3, 390-395, May 1978.
doi:10.1109/TAP.1978.1141852

2. Dinger, R. J., "Reactively steered adaptive array using microstrip patch elements at 4 GHz ," IEEE Transactions on Antennas and Propagation, Vol. 32, 848-856, Aug. 1984.
doi:10.1109/TAP.1984.1143420

3. Preston, S. L., D. V. Thiel, J. W. Lu, S. G. O'Keefe, and T. S. Bird, "Electronic beam steering using switched parasitic elements," Electronic Letters, Vol. 33, No. 1, 7-8, Jan. 1997.
doi:10.1049/el:19970048

4. Sibille, A., C. Roblin, and G. Poncelet, "Circular switched monopole array for beam steering wireless communication," Electronic Letters, Vol. 33, No. 7, 551-552.
doi:10.1049/el:19970402

5. Vaughn, R., "Switched parasitic elements for antenna diversity," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 2, 399-405, Feb. 1999.
doi:10.1109/8.761082

6. Kamarudin, M. R. B. and P. S. Hall, "Switch beam antenna array with parasitic elements," Progress In Electromagnetics Research B, Vol. 13, 187-201, 2009.
doi:10.2528/PIERB09011603

7. Thiel, D. V. and S. Smith, Switched Parasitic Antennas for Cellular Communication, Artech House, 2001.

8. Cheng, J., Y. Kamiya, and T. Ohira, "Adaptive beamforming of ESPAR antenna based on steepest descent gradient algorithm," IEICE Transactions on Communication, Vol. E84-B, No. 7, 1790-1800, Jul. 2001.

9. Sun, C., A. Hirata, T. Ohira, and N. C. Karmakar, "Fast beamforming of electronically steerable parasitic array radiator antennas: Theory and experiment," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 52, 1819-1832, Jul. 2004.

10. Kuwahara, Y., "Adaptive beamforming on ESPAR antenna by the direct search," IEICE Transactions on Communications, Vol. J89-B, No. 1, 39-44, Jan. 2006.

11. Abdullah, N. and Y. Kuwahara, "Adaptive beamforming for ESPAR by means of downhill simplex method," IEICE Tech. Report, Vol. 109, No. 218, 37-42, AP 2009-103, Oct. 2009.

12. Nelder, J. A. and R. Mead, "A simplex method for function minimization," Computer Journal, Vol. 7, No. 4, 308-313, 1965.

13. William, T. V., H. P. William, A. T. Saul, and P. F. Brian, Numerical Recipes the Art of Scientific Computing, Cambridge University Press, 1993.