Vol. 20
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-08-08
Beam Tracing for Fast RCS Prediction of Electrically Large Targets
By
Progress In Electromagnetics Research M, Vol. 20, 29-42, 2011
Abstract
A new radar cross section (RCS) prediction technique based on beam tracing is presented. The incident plane wave is modeled as a set of trigonal ray tubes, and each ray tube is traced and recursively subdivided as its reflection aspect. The calculation time of the proposed method is independent of target size. The proposed method provides accurate solutions and is efficient for RCS analysis of electrically large targets.
Citation
Hyeon-Gyu Park Hyo-Tae Kim Kyung-Tae Kim , "Beam Tracing for Fast RCS Prediction of Electrically Large Targets," Progress In Electromagnetics Research M, Vol. 20, 29-42, 2011.
doi:10.2528/PIERM11060702
http://www.jpier.org/PIERM/pier.php?paper=11060702
References

1. Ling, H., R. C. Chou, and S. W. Lee, "Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity," IEEE Trans. on Antennas Propag., Vol. 37, No. 2, 194-205, 1989.
doi:10.1109/8.18706

2. Suk, S.-H., T.-I. Seo, H.-S. Park, and H.-T. Kim, "Multiresolution grid algorithm in the SBR and its application to the RCS calculation," Microw. Opt. Tech. Lett., Vol. 29, No. 6, 394-397, 2001.
doi:10.1002/mop.1188

3. Gao, P. C., Y.-B. Tao, and H. Lin, "Fast RCS prediction using multiresolution shooting and bouncing ray method on the GPU," Progress In Electromagnetics Research, Vol. 107, 187-202, 2010.
doi:10.2528/PIER10061807

4. Jin, K.-S., T.-I. Suh, S.-H. Suk, B.-C. Kim, and H.-T. Kim, "Fast ray tracing using a space-division algorithm for RCS prediction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 119-126, 2006.
doi:10.1163/156939306775777341

5. Kim, B.-C., K.-K. Park, and H.-T. Kim, "Effcient RCS prediction method using angular division algorithm," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 65-74, 2009.
doi:10.1163/156939309787604625

6. Park, K.-K. and H.-T. Kim, "RCS prediction acceleration and reduction of table size for the angular division algorithm," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1657-1664, 2009.

7. Heckbert, P. S. and P. Hanrdahan, "Beam tracing polygonal objects," Computer Graphics (Proc. SIGGRAPH), Vol. 18, No. 3, 119-127, 1984.
doi:10.1145/964965.808588

8. Weiler, K. and P. Arherton, "Hidden surface removal using polygon area sorting," Computer Graphics (Proc. SIGGRAPH), Vol. 11, No. 2, 214-222, 1977.
doi:10.1145/965141.563896

9. De Berg, M., M. Van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry, Springer, 2000.

10. Klement, D., J. Preissner, and V. Stein, "Special problems in applying the physical optics method for backscatter computation of complicated objects," IEEE Trans. on Antennas Propag., Vol. 36, No. 2, 228-237, 1988.
doi:10.1109/8.1100

11., , FEKO Suite 5.5, EM Software and Systems. Available: http://www.feko.info/..
doi:10.1109/8.1100