1. Yablonovitch, E., "Inhibited spontaneous emission in solid state physics and electronics," Physical Review Letters, Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059 Google Scholar
2. Yablonovitch, E., "Photonic band gap structures," Journal of the Optical Society of America B, Vol. 10, 283-295, 1993.
doi:10.1364/JOSAB.10.000283 Google Scholar
3. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, New Jersey, 2008.
4. Banerjee, A., "Spectrum engineering with 1D photonic crystals," Photonic Crystals: Band Structure and Applications, Nova Science Publishers, Hauppauge, New York, 2010. Google Scholar
5. Rumyantsev, V. V. and S. A. Fedorov, "Propagation of light in layered composites with variable thickness of the layers," Technical Physics, Vol. 53, 727-731, 2008.
doi:10.1134/S1063784208060091 Google Scholar
6. Rumyantsev, V. V. and S. A. Fedorov, "Propagation of light in a quasi-two-dimensional Si/SiO2 superlattice with variable layer thickness," Optics and Spectroscopy, Vol. 106, 627-631, 2009.
doi:10.1134/S0030400X09040250 Google Scholar
7. Wu, C.-J., B.-H. Chu, and M.-T. Weng, "Analysis of optical reflection in a chirped distributed bragg reflector," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 129-138, 2009.
doi:10.1163/156939309787604643 Google Scholar
8. Wu, C.-J., B.-H. Chu, M.-T. Weng, and H.-L. Lee, "Enhancement of bandwidth in a chirped quarter-wave dielectric mirror," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 437-447, 2009.
doi:10.1163/156939309787612365 Google Scholar
9. Qi, L.-M. and Z. Yang, "Modified plane wave method analysis of dielectric plasma photonic crystal," Progress In Electromagnetics Research, Vol. 91, 319-332, 2009.
doi:10.2528/PIER09022605 Google Scholar
10. Awasthi, S. K. and S. P. Ojha, "Design of a tunable optical filter by using one-dimensional ternary photonic band gap material," Progress In Electromagnetic Research M, Vol. 4, 117-132, 2008.
doi:10.2528/PIERM08061302 Google Scholar
11. Awasthi, S. K., U. Malaviya, and S. P. Ojha, "Enhancement of omnidirectional total-reflection wavelength range by using one- dimensional ternary photonic bandgap material," Journal of the Optical Society of America B, Vol. 23, 2566-2571, 2006.
doi:10.1364/JOSAB.23.002566 Google Scholar
12. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetic Research, Vol. 89, 11-22, 2009.
doi:10.2528/PIER08112105 Google Scholar
13. Banerjee, A., "Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures," Progress In Electromagnetics Research Letters, Vol. 11, 129-137, 2009.
doi:10.2528/PIERL09080101 Google Scholar
14. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004 Google Scholar
15. Banerjee, A., "Enhanced incidence angle based spectrum tuning by using one-dimensional ternary photonic band gap structures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1023-1032, 2010.
doi:10.1163/156939310791586151 Google Scholar
16. Born, M. and E.Wolf, "Basic properties of electromagnetic fields," Principles of Optics, 58-69, Cambridge University Press, U.K., 1980. Google Scholar
17. Vandenbem, C., J. M. Vigoureux, and J. P. Vigenron, "Tunable band structures in uniaxial multilayer stacks," Journal of Optical Society of America B, Vol. 23, 2366-2376, 2006.
doi:10.1364/JOSAB.23.002366 Google Scholar