Vol. 20
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-08-17
Coplanar Metamaterial Micro-Resonator
By
Progress In Electromagnetics Research M, Vol. 20, 73-80, 2011
Abstract
We propose a metamaterial coplanar stop-band filter made of multi-turn rectangular spiral particles. Numerical and experimental results show the feasibility of devices with dimensions more than 10 times smaller than those in the literature and with good performances.
Citation
Salim Nemer Bruno Sauviac Bernard Bayard Jean Jacques Rousseau Chadi Nader Joseph Bechara Antonio Khoury , "Coplanar Metamaterial Micro-Resonator," Progress In Electromagnetics Research M, Vol. 20, 73-80, 2011.
doi:10.2528/PIERM11062804
http://www.jpier.org/PIERM/pier.php?paper=11062804
References

1. Boukchiche, F., T. Zhou, M. Le Berre, D. Vincent, B. Payet-Gervy, and F. Calmon, "Novel composite non reciprocal right/left-handed line made from ferrite material," PIERS Proceedings, 700-702, Cambridge, USA, Jul. 5-8, 2010.

2. Zermane, A., B. Sauviac, B. Bayard, and A. Benghalia, "Numerical study of a coplanar zeroth-order resonator on YIG thin film," PIERS Proceedings, 1025-1028, Marrakesh, Morocco, Mar. 20-23, 2011.

3. Falcone, F., F. Martin, J. Bonache, R. Marques, and M. Sorolla, "Coplanar waveguide structures loaded with split-ring resonators," Microwave and Optical Technology Letters, Vol. 40, No. 1, Jan. 5, 2004.

4. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075, 1999.

5. Nemery, S., B. Sauviac, B. Bayard, C. Nader, J. Bechara, and A. Khoury, "Modelling resonance frequencies of a multi-turn spiral for metamaterial applications," Progress In Electromagnetics Research C, Vol. 20, 31-42, 2011.

6. Ganguly, A. and B. E. Spielman, "Dispersion characteristics for arbitrarily-configured transmission media," IEEE Trans. Microwave Theory Tech., Vol. 25, No. 12, 1138-1141, Dec. 1977.
doi:10.1109/TMTT.1977.1129288

7. Spielman, B. E., "Integrated circuit media for millimetre-wave applications," AGARD Conference Proceedings, 245, The Advisory Group for Aerospace Research and Development, 1979.

8. Wadel, B. C., Transmission Line Design Handbook, 79, Artech House, Boston, 1991.