Vol. 23
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-08-31
Tunable Band-Pass Filter Using RF MEMS Capacitance and Transmission Line
By
Progress In Electromagnetics Research C, Vol. 23, 233-247, 2011
Abstract
In this paper we present the design and fabrication of an RF MEMS tunable band-pass filter. The band-pass filter design uses both distributed transmission lines and RF MEMS capacitances together to replace the lumped elements. The use of RF MEMS variable capacitances gives the flexibility of tuning both the centre frequency and the band-width of the band-pass filter. A prototype of the tunable band-pass filter is realized using parallel plate capacitances. The variable shunt and series capacitances are formed by a combination of parallel plate RF MEMS shunt bridges and series cantilevers. The filter operates at C-X band. The measurement results agree well with the simulation results.
Citation
Shimul Chandra Saha Ulrik Hanke Hakon Sagberg Tor A. Fjeldly Trond Saether , "Tunable Band-Pass Filter Using RF MEMS Capacitance and Transmission Line," Progress In Electromagnetics Research C, Vol. 23, 233-247, 2011.
doi:10.2528/PIERC11070607
http://www.jpier.org/PIERC/pier.php?paper=11070607
References

1. Zou, J., C. Liu, J. Schutt-Aine, J. Chen, and S. Kang, "Development of a wide tuning range MEMS tunable capacitor for wireless communication systems," International Electron. Devices Meet. Tech. Digest, 403-406, 2000.

2. Afrang, S. and E. Abbaspour-Sani, "A low voltage MEMS structure for RF capacitive switches," Progress In Electromagnetics Research, Vol. 65, 157-167, 2006.
doi:10.2528/PIER06093001

3. Abbaspour-Sani, E., N. Nasirzadeh, and G. R. Dadashzadeh, "Two novel structures for tunable MEMS capacitors with RF applications," Progress In Electromagnetics Research, Vol. 68, 169-183, 2007.
doi:10.2528/PIER06081404

4. Topalli, K., M. Unlu, H. I. Atadoy, S. Demir, O. Aydin Civi, and T. Akin, "Empirical formulation of bridge inductance in inductively tuned RF MEMS shunt switches," Progress In Electromagnetics Research, Vol. 97, 343-356, 2009.
doi:10.2528/PIER09092502

5. Liu, Y., A. Borgioli, A. S. Nagra, and R. A. York, "Distributed MEMS transmission line for tunable filter applications," Int. J. RF and Microwave CAE, Vol. 11, 254-260, John Willey & Sons, Inc., 2001.

6. Tamijani, A. A., L. Dussopt, and G. M. Rebeiz, "Miniature and tunable filters using MEMS capacitors," IEEE Transaction on Microwave Theory and Technique, Vol. 51, No. 7, 1878-1885, Jul. 2003.
doi:10.1109/TMTT.2003.814317

7. Peroulis, D., S. Pacheco, K. Sarabandi, and L. P. B. Katehi, "Tunable lumped components with applications to reconfigurable MEMS filters ," IEEE MTT-S Digest, Vol. 1, 341-344, May 20-25, 2001.

8. Lee, S., J. Kim, J. Kim, Y. Kim, and Y. Kwon, "Millimeter-wave MEMS tunable low pass filter with reconfigurable series inductor and capacitive shunt switches," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 10, 691-693, Oct. 2005.

9. Park, J., S. Lee, J. Kim, H. Kim, Y. Kim, and Y. Kwon, "Reconfigurable millimeter-wave filters using CPW-based periodic structures with novel multiple-contact MEMS switches," IEEE Journal of Microelectromechanical Systems, Vol. 14, No. 3, 456-463, Jun. 2005.
doi:10.1109/JMEMS.2005.844849

10. Saha, S. C. and T. Sæther, "Modeling and simulation of low pass filter using RF MEMS capacitance and transmission line," Proceeding IMAPS Nordic, 155-159, 2005.

11. Saha, S. C., U. Hanke, and T. Sæther, "Modeling, design and simulation of tunable band-pass filter using RF MEMS capacitance and transmission line," SPIE International Symposium, Microelectronics, MEMS and Nanotechnology, Proc. of SPIE, Vol. 6035, Brisbane, Australia, Dec. 2005.

12. Rebeiz, G. M., RF MEMS Theory, Design, and Technology, 92, John Willey & Sons, 2003.

13. Pozar, D. M., Microwave Engineering, 2nd Ed., Vol. 8, John Willey & Sons, 1998.

14. Chiou, Y.-C. and J.-T. Kuo, "Planar multiband bandpass filter with multimode stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 114, 129-144, 2011.

15. Advance Design Systems (ADS) from Agilent.

16. Saha, S. C., H. Sagberg, E. Poppe, G. U. Jensen, T. A. Fjeldly, and T. Sæther, "Tuning of resist slope with hardbaking parameters and release methods of extra hard photoresist for RF MEMS switches," Journal of Sensor and Actuators A: Phys., Vol. 142, 452-461, 2008.
doi:10.1016/j.sna.2007.10.067

17. Saha, S. C., H. Sagberg, E. Poppe, G. U. Jensen, and T. Sæther, "Metallization scheme and release methods for fabrication of RF MEMS switches," Proceedings of 33rd Micro- and Nano-Engineering Conference (MNE 2007), Copenhagen, Denmark, Sep. 2007.

18. Entesari, K. and G. M. Rebeiz, "A differential 4-bit 6.5-10 GHz RF MEMS tunable filter," IEEE Transaction of Microwave Theory and Techniques, Vol. 53, No. 3, Part 2, 1103-1110, 2005.

19. Matthaei, G. L., E. Young, and E. M. T. Jones, "Microwave Filters, Impedance-Matching Networks, and Coupling Structures," Artech House, Norwood, MA, 1980.

20. Pillans, B., A. Malczewski, R. Allison, and J. Brank, "6-15 GHz RF MEMS tunable filters," IEEE MTT-S, 919-922, 2005.