Vol. 21
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-10-02
Linear and Nonlinear Refractive Index Changes in Spherical Quantum Dot
By
Progress In Electromagnetics Research M, Vol. 21, 77-92, 2011
Abstract
In this study, refractive index changes associated with intersubband transitions in a spherical quantum dot, GaAs/AlxGa1-xAs, have been theoretically calculated in the presence of impurity. In this regard, the effect of dot radius, stoichiometric ratio, impurity and incident optical intensity on the refractive index changes have been investigated for the transitions between higher energy states, i.e., 1s-1p, 1p-1d and 1d-1f. The results show that these parameters have a great influence on the refractive index changes.
Citation
Bekir Cakir Yusuf Yakar Ayhan Özmen , "Linear and Nonlinear Refractive Index Changes in Spherical Quantum Dot," Progress In Electromagnetics Research M, Vol. 21, 77-92, 2011.
doi:10.2528/PIERM11080903
http://www.jpier.org/PIERM/pier.php?paper=11080903
References

1. Maksym, P. A. and T. Chakraborty, "Quantum dots in a magnetic field: Role of electron-electron interactions," Phys. Rev. Lett., Vol. 65, 108, 1990.

2. Bose, C. and C. K. Sarkar, "Effect of a parabolic potential on the impurity binding energy in spherical quantum dots," Physica B, Vol. 253, 238, 1998.

3. Niculescu, E. C., "Energy levels in a spherical quantum dot with parabolic confinement under applied electric fields," Mod. Phys. Lett. B, Vol. 15, 545, 2001.

4. Mikhail, I. F. I. and I. M. M. Ismail, "Binding energy of an off-centre hydrogenic donor impurity in a spherical quantum dot," Phys. Stat. Sol. (B), Vol. 244, 3647, 2007.

5. Cakir, B., A. Ozmen, U. Atav, H. Yuksel, and Y. Yakar, "Investigation of electronic structure of a quantum dot using slater-type orbitals and quantum genetic algorithm," Int. J. Mod. Phys. C, Vol. 18, 61, 2007.

6. Cakir, B., A. Ozmen, U. Atav, H. Yuksel, and Y. Yakar, "Calculation of electronic structure of a spherical quantum dot using a combination of quantum genetic algorithm and Hartree-Fock-Roothaan method," Int. J. Mod. Phys. C, Vol. 19, 599, 2008.

7. Aquino, N., "The hydrogen and helium atoms confined in spherical boxes," Adv. Quantum Chem., Vol. 57, 123, 2009.

8. Patil, S. H. and Y. P. Varshni, "Properties of confined hydrogen and helium atoms," Adv. Quantum Chem., Vol. 57, 1, 2009.

9. Sadeghi, E., "Impurity binding energy of excited states in spherical quantum dot," Physica E, Vol. 41, 1319, 2009.

10. Duque, C. A., E. Kasapoglu, S. Sakiro·glu, H. Sari, and E. Sokmen, "Intense laser effects on donor impurity in a cylindrical single and vertically coupled quantum dots under combined effects of hydrostatic pressure and applied electric field," Apply Surf. Sci., Vol. 256, 7406, 2010.

11. Mikhail, I. F. I. and I. M. M. Ismail, "Hydrogenic impurity in a quantum dot: Comparison between the variational and strong perturbation methods," Superlattices Microstruct., Vol. 48, 388, 2010.

12. Nasri, D. and N. Sakkal, "General properties of confined hydrogenic impurities in spherical quantum dots," Physica E, Vol. 42, 2257, 2010.

13. Ahn, D. and S. L. Chuang, "Calculation of linear and nonlinear intersubband optical absorptions in a quantum-well model with an applied electric-field," J. Quantum Electronics, Vol. 23, 2196, 1987.

14. Kuhn, K. J., G. I. Iyengar, and S. Yee, "Free carrier induced changes in the absorption and refractive index for intersubband optical transitions in AlxGa11-xAs/GaAs/AlxGa11-xAs quantum wells," J. Appl. Phys., Vol. 70, 5010, 1991.

15. Liu, C. H. and B. R. Xu, "Theoretical study of the optical absorption and refraction index change in a cylindrical quantum dot," Phys. Lett. A, Vol. 372, 888, 2008.

16. Wang, G., Q. Guo, and K. Guo, "Refractive index changes induced by the incident optical intensity in semiparabolic quantum wells," Chin. J. Phys., Vol. 109, 063108, 2011.

17. Ozmen, A., Y. Yakar, B. Cakir, and U. Atav, "Computation of the oscillator strength and absorption coeffcients for the intersubband transitions of the spherical quantum dot," Opt. Commun., Vol. 282, 3999, 2009.

18. Yakar, Y., B. Cakir, and A. Ozmen, "Linear and nonlinear optical properties in spherical quantum dots," Commun. Theor. Phys., Vol. 53, 1185, 2010.

19. Cakir, B., Y. Yakar, A. Ozmen, M. O. Sezer, and M. Sahin, "Linear and nonlinear optical absorption coeffcients and binding energy of a spherical quantum dot," Superlattices Microstruct., Vol. 47, 556, 2010.

20. Yakar, Y., B. Cakir, and A. Ozmen, "Calculation of linear and nonlinear optical absorption coeffcients of a spherical quantum dot with parabolic potential," Opt. Commun., Vol. 283, 1795, 2010.

21. Chen, B., K. X. Guo, R. Z. Wang, Z. H. Zhang, and Z. L. Liu, "Linear and nonlinear intersubband optical absorption in double triangular quantum wells," Solid State Commun., Vol. 149, 310, 2009.

22. Bau, N. Q., L. T. Hung, and N. D. Nam, "The nonlinear absorption coeffcient of a strong electromagnetic wave by confined electrons in quantum wells under the influences of confined phonons," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1751-1761, 2010.

23. Trein, H. D. and N. V. Nhan, "The nonlinear absorption of a strong electromagnetic waves caused by confined electrons in a cylindrical quantum wire," Progress In Electromagnetics Research Letters, Vol. 20, 87-96, 2011.

24. Sahin, M., "Photoionization cross section and intersublevel transitions in a one- and two-electron spherical quantum dot with a hydrogenic impurity," Phys. Rev. B, Vol. 77, 045317, 2008.

25. Sahin, M., "Third-order nonlinear optical properties of a one- and two-electron spherical quantum dot with and without a hydrogenic impurity," J. Appl. Phys., Vol. 106, 063710, 2009.

26. Yuan, J. H., J. S. Huang, M. Yin, O. J. Zeng, and J. P. Zhang, "The correlation energies and nonlinear optical absorptions of an exciton in a disc-like quantum dot," Opt. Commun., Vol. 283, 3529, 2010.

27. Shao, S., K. X. Guo, Z. H. Zhang, N. Li, and C. Peng, "Studies on the third-harmonic generations in cylindrical quantum dots with an applied electric field," Superlattices Microstruct., Vol. 48, 541, 2010.

28. Rezaei, G., B. Vaseghi, F. Taghizadeh, M. R. K. Vahdani, and M. J. Karimi, "Intersubband optical absorption coeffcient changes and refractive index changes in a two-dimensional quantum pseudodot system," Superlattices Microstruct., Vol. 48, 450, 2010.

29. Zhang, L., Z. Yu, W. Yao, Y. Liu, and H. Ye, "Linear and nonlinear optical properties of strained GaN/AlN quantum dots: Effects of impurities, radii of QDs, and the incident optical intensity," Superlattices Microstruct., Vol. 48, 434, 2010.

30. Rezaei, G., M. R. K. Vahdani, and B. Vaseghi, "Nonlinear optical properties of a hydrogenic impurity in an ellipsoidal finite potential quantum dot," Current Appl. Phys., Vol. 11, 176, 2011.

31. Zhang, Z. H., K. X. Guo, B. Chen, R. Z. Wang, M. W. Kang, and S. Shao, "Theoretical studies on the optical absorption coeffcients and refractive index changes in parabolic quantum dots in the presence of electric and magnetic fields," Superlattices Microstruct., Vol. 47, 408, 2010.

33. Duque, C. A., E. Kasapoglu, S. Sakiroglu, H. Sari, and E. Sokmen, "Intense laser effects on nonlinear optical absorption and optical rectification in single quantum wells under applied electric and magnetic field," Apply Surf. Sci., Vol. 257, 2313, 2011.

34. Kirak, M., S. Yilmaz, M. S»ahin, and M. Gencaslan, "The electric field effects on the binding energies and the nonlinear optical properties of a donor impurity in a spherical quantum dot," J. Appl. Phys., Vol. 109, 094309, 2011.

35. Boyd, W., Nonlinear Optics, 2nd edition, Academic Press, New York, 2003.

36. Adachi, S., GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties, World Scientific, Singapore, 1994.

37. Queisser, H. J. and E. E. Haller, "Defects in semiconductors: Some fatal, some vital," Science, Vol. 281, 945, 1998.