Vol. 21
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-11-09
Specteral Domain Analysis of Resonant Characteristics and Radiation Patterns of a Circular Disk and Annular Ring Microstrip Antenna on Uniaxial Substrate
By
Progress In Electromagnetics Research M, Vol. 21, 237-251, 2011
Abstract
A full-wave analysis for determining the resonant frequency, quality factor and far-zone radiation patterns of a circular disk and annular ring microstrip patches, printed on a uniaxial anisotropic substrate is presented. Green's functions of the structure are determined in Hankel transform domain (HTD) using Hertz potential vectors. Galerkin's method, together with parsval's relation in Hankel transform domain is then applied to compute the resonant frequency and quality factor. The far-zone radiation patterns are expressed in terms of Hankel transforms of the tangential fields on the substrate. Wave equation is solved in cylindrical coordinates for the structure to estimate the basis function. The numerical results show that there are substantial deviations in calculated resonant frequency and quality factor when substrate dielectric anisotropy is considered. Furthermore, significant variations are seen in the radiation patterns of the structures due to substrate anisotropy. The variations of resonant frequency, quality factor and radiation patterns of the structure, with respect to anisotropy ratio of the substrate, for several values of substrate thickness and patch radius are presented.
Citation
Alireza Motevasselian, "Specteral Domain Analysis of Resonant Characteristics and Radiation Patterns of a Circular Disk and Annular Ring Microstrip Antenna on Uniaxial Substrate," Progress In Electromagnetics Research M, Vol. 21, 237-251, 2011.
doi:10.2528/PIERM11091002
References

1. Alexopoulos, N. G., "Integrated circuit structures on anisotropic substrates," IEEE Trans. Microwave Theory Tech., Vol. 33, 847-881, Oct. 1985.
doi:10.1109/TMTT.1985.1133145

2. Alexopoulos, N. G. and S. A. Maas, "Characteristics of microstrip directional couplers on anisotropic substrates," IEEE Trans. Microwave Theory Tech., Vol. 30, 1267-1270, Aug. 1982.
doi:10.1109/TMTT.1982.1131237

3. Drake, E., R. R. Boix, M. Horno, and T. K. Sarkar, "Effect of substrate dielectric anisotropy on the frequency behavior of microstrip circuits," IEEE Trans. Microwave Theory Tech., Vol. 30, 1267-1270, Aug. 1982.
doi:10.1109/TMTT.1982.1131237

4. Yang, H. Y. and N. G. Alexopoulos, "Uniaxial and biaxial sub-strate effects on finline characteristics," IEEE Trans. Microwave Theory Tech., Vol. 35, 24-29, Jan. 1987.
doi:10.1109/TMTT.1987.1133590

5. Bouttout, F., F. Benabdelaziz, A. Benghalia, D. Khedrouche, and T. Fortaki, "Uniaxially anisotropic substrate effects on resonance of rectangular microstrip patch antenna," Electron. Lett., Vol. 35, No. 4, 255-256, Feb. 1999.
doi:10.1049/el:19990026

6. Zhao, A., J. Juntunen, and A. V. Risnen, "An effcient FDTD algorithm for the analysis of microstrip patch antennas printed on a general anisotropic dielectric substrate," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 7, Jul. 1999.

7. Pozar, D. M., "Radiation and scattering from a micro strip patch on a uniaxial substrate," IEEE Trans. Antennas Propagat., Vol. 35, 613-621, Jun. 1987.
doi:10.1109/TAP.1987.1144161

8. Campos, A. L. P. S. and A. G. D'Assunqiio, "Hertz vector potential analysis of FSS on anisotropic substrates," Proceedings SBMO/IEEE MTT-S IMOC, 2003.

9. Michalski, K. A. and D. Zheng, "Analysis of microstrip resonators of arbitrary shape," IEEE Trans. Microwave Theory Tech., Vol. 40, 112-119, Jan. 1992.
doi:10.1109/22.108330

10. Bahl, I. J. and P. Bhartia, Mirostrip Antennas, Artech House, 1980.

11. Losada, V., R. R. Boix, and M. Horn, "Resonant modes of circular microstrip patches in multilayered substrate," IEEE Trans. Antennas propagat., Vol. 47, No. 4, Apr. 1999.

12. Losada, V., R. R. Boix, and M. Horno, "Full wave analysis of circular microstrip resonators in multilayered media containing uniaxial anisotropic dielectrics, magnetized ferrites, and chiral materials," IEEE Trans. Microwave Theory Tech., Vol. 48, 1057-1064, Jun. 2000.
doi:10.1109/22.904745

13. Curel, C. S. and E. Yazgan, "Characteristics of a circular patch microstrip antenna on uniaxialiy anisotropic substrate," IEEE Trans. Antennas Propagat., Vol. 52, No. 10, Oct. 2003.

14. Losada, V., R. R. Boix, and F. Medina, "Resonant modes of stacked circular microstrip patches in multilayered substrates con- taining anisotropic and chiral materials," Journal of Electromag- netic Waves and Applications, Vol. 17, No. 4, 619-640, 2003.
doi:10.1163/15693930360681992

15. Row, J.-S., "Dual-frequency circularly polarised annular-ring microstrip antenna," Electron. Lett., Vol. 40, No. 3, Feb. 2004.

16. Bahl, I. J., S. Stuchly, and M. A. Stuchly, "A new microstrip radiator for medical applications," IEEE Trans. Microwave Theory Tech., Vol. 28, No. 12, Dec. 1980.
doi:10.1109/TMTT.1980.1130268

17. Gomez-Tagle, J. and C. G. Christodoulou, "Extended cavity model analysis of stacked microstrip ring antenna," IEEE Trans. Antennas Propagat., Vol. 45, No. 11, Nov. 1997.

18. Ali, S. M., W. C. Chew, and J. A. Kong, "Vector hankel transform analysis of annular-ring microstrip antenna," IEEE Trans. Antennas Propagat., Vol. 30, 637-644, Jul. 1982.

19. Wu, Y. S. and F. J. Rosenbaum, "Mode chart for microstrip ring resonators," IEEE Trans. Microwave Theory Tech., Jul. 1973.

20. Barkat, Q and A. Benghalia, "Radiation and resonant frequency of superconducting annular ring microstrip antenna on uniaxial anisotropic media," Journal of Infrared, Millimeter and Terahertz, Vol. 30, No. 10, 1053-1066, Jun. 2009.
doi:10.1007/s10762-009-9526-2

21. Gurel, G. S. and E. Yazgan, "Resonance in microstrip ring resonator with uniaxially anisotropic substrate and superstrate layers," Journal of Electromagnetic Waves and Applications, Vol. 4, No. 8-9, 1135-1144, 2010.
doi:10.1163/156939310791585981

22. Silva. S. G., J. R. S. Oliveira., and A. G. Dassuno, "Annular ring microstrip antennas for millimeter wave applications," Int. Journal of Infrared and Millimeter Waves, 821-829, Apr. 2007.

23. Collin, R. E., Field Theory of Guided Waves, 2nd edition, IEEE Press, New York, 1991.

24. Araki, K. and T. Itoh, "Hankel transform domain analysis of open circular microstrip radiating structure," IEEE Trans. Antennas Propagat., Vol. 29, No. 1, Jan. 1981.
doi:10.1109/TAP.1981.1142521

25. Clarke, R. H., Diffraction Theory and Antenna, Wiley, New York, 1980.

26. Balanis, C. A., Antenna Theory-Analysis and Design, 3rd edition, Wiley, New York, 2005.