Vol. 24
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-10-21
Compressive Estimation of Cluster-Sparse Channels
By
Progress In Electromagnetics Research C, Vol. 24, 251-263, 2011
Abstract
Cluster-sparse multipath channels, i.e., non-zero taps occurring in clusters, exist frequently in many communication systems, e.g., underwater acoustic (UWA), ultra-wide band (UWB), and multiple-antenna communication systems. Conventional sparse channel estimation methods often ignore the additional structure in the problem formulation. In this paper, we propose an improved compressive channel estimation (CCE) method using block orthogonal matching pursuit algorithm (BOMP) based on the cluster-sparse channel model. Making explicit use of the concept of cluster-sparsity can yield better estimation performance than the conventional sparse channel estimation methods. Compressive sensing utilizes cluster-sparse information to improve the estimation performance by further mitigating the coherence in training signal matrix. Finally, we present the simulation results to confirm the performance of the proposed method based on cluster-sparse.
Citation
Guan Gui Na Zheng Nina Wang Abolfazl Mehbodniya Fumiyuki Adachi , "Compressive Estimation of Cluster-Sparse Channels," Progress In Electromagnetics Research C, Vol. 24, 251-263, 2011.
doi:10.2528/PIERC11092005
http://www.jpier.org/PIERC/pier.php?paper=11092005
References

1. Bajwa, W. U., J. Haupt, A. M. Sayeed, and R. Nowak, "Compressed channel sensing: A new approach to estimating sparse multipath channels," Proceedings of the IEEE, Vol. 98, No. 6, 1058-1076, 2010.
doi:10.1109/JPROC.2010.2042415

2. Gui, G., Q.Wan, A. M. Huang, and Z. X. Chen, "Sparse multipath channel estimation using dantzig selector algorithm," The 12th International Symposium on Wireless Personal Multimedia Communications, Sendai, 2009.

3. Czink, N., X. Yin, H. Ozcelik, M. Herdin, E. Bonek, and B. Fleury, "Cluster characteristics in a MIMO indoor propagation environment," IEEE Transactions on Wireless Communications, Vol. 6, No. 4, 1465-1475, 2007.
doi:10.1109/TWC.2007.348343

4. Vuokko, L., V. M. Kolmonen, J. Salo, and P. Vainikainen, "Measurement of large-scale cluster power characteristics for geometric channel models," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 11, 3361-3365, 2007.
doi:10.1109/TAP.2007.908844

5. Gui, G., Q. Wan, W. Peng, and F. Adachi, "Sparse multipath hannel estimation using compressive sampling matching pursuit algorithm," IEEE VTS APWCS, Gaoxiong, 2010.

6. Gui, G., Q. Wan, N. N. Wang, and C. Y. Huang, "Fast sparse multipath channel estimation with smooth L0 algorithm for broadband wireless communication systems," Communication and Networks, Vol. 3, No. 1, 1-7, 2010.
doi:10.4236/cn.2011.31001

7. Taubock, G. and F. Hlawatsch, "A compressed sensing techniques for OFDM channel estimation in mobile environments: Exploiting channel sparsity for reducing pilots," IEEE ICASSP, 2885-2888, 2008.

8. Stojanovic, M., "OFDM for underwater acoustic communications: Adaptive synchronization and sparse channel estimation," IEEE ICASSP, Vol. 1, No. 6, 5288-5291, 2008.

9. Rontogiannis, A. A. and K. Berberidis, "Efficient decision feedback equalization for sparse wireless channels," IEEE Transactions on Wireless Communications, Vol. 2, No. 3, 570-581, 2003.
doi:10.1109/TWC.2003.811189

10. Paredes, J. L., G. R. Arce, and Z. Wang, "Ultra-wideband compressed sensing: Channel estimation," IEEE Journal of Selected Topics in Signal Processing, Vol. 1, No. 3, 383-395, 2007.
doi:10.1109/JSTSP.2007.906657

11. Shi, G., J. Lin, X. Chen, F. Qi, D. Liu, and L. Zhang, "UWB echo signal detection with ultra-low rate sampling based on compressed sensing," IEEE Transactions on Circuits and Systems, Vol. 55, No. 4, 379-383, 2008.
doi:10.1109/TCSII.2008.918988

12. Zhou, C., N. Guo, and R. C. Qiu, "Time-reversed ultra-wideband (UWB) multiple measured spatial channels," IEEE Transactions on Vehicular Technology, Vol. 58, No. 6, 2884-2898, 2009.
doi:10.1109/TVT.2008.2012109

13. Gui, G., A. Mehbodniya, Q. Wan, and F. Adachi, "Sparse signal recovery with OMP algorithm using sensing measurement matrix," IEICE Electronics Express, Vol. 8, No. 5, 285-290, 2011.
doi:10.1587/elex.8.285

14. Huang, A. M., G. Gui, Q. Wan, and A. Mehbodniya, "A block orthogonal matching pursuit algorithm based on sensing dictionary," International Journal of the Physical Sciences, Vol. 6, No. 5, 992-999, 2011.

15. Huang, A. M., G. Gui, Q. Wan, and A. Mehbodniya, "A re-weighted algorithm for designing data dependent sensing dictionary," International Journal of the Physical Sciences, Vol. 6, No. 3, 386-390, 2011.

16. Eldar, Y. C., P. Kuppinger, and H. Bolcskei, "Block-sparse signals: Uncertainty relations and efficient recovery," IEEE Transactions on Signal Processing, Vol. 58, No. 6, 3042-3054, 2010.
doi:10.1109/TSP.2010.2044837

17. Eldar, Y. C. and M. Mishali, "Robust recovery of signals from a structured union of subspaces," IEEE Transactions on Information Theory, Vol. 55, No. 11, 5302-5316, 2009.
doi:10.1109/TIT.2009.2030471

18. Cai, T. T. and L. Wang, "Orthogonal matching pursuit for sparse signal recovery with noise," IEEE Transactions on Information Thoeory, Vol. 57, No. 12, 4655-4666, 2011.

19. Tropp, J. A. and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 53, No. 12, 4655-4666, 2007.
doi:10.1109/TIT.2007.909108

20. Tropp, J. A., A. C. Gilbert, and M. J. Strauss, "Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit," Signal Processing, Vol. 86, No. 3, 572-588, 2006.
doi:10.1016/j.sigpro.2005.05.030

21. Special issue, , "Sparse approximations in signal and image processing,", http://nips.cc/Conferences/2009/Program/event.php?ID=1878.

22. Adachi, F., H. Tomeba, and K. Takeda, "Introduction of frequency-domain signal processing to broadband single-carrier transmissions in a wireless channel," IEICE Transactions on Communicationns, Vol. E92-B, No. 9, 2789-2808, 2009.
doi:10.1587/transcom.E92.B.2789

23. Biglieri, E., J. Proakis, and S. Shamai, "Fading channels: Information-theoretic and communications aspects," IEEE Transactions on Information Theory, Vol. 44, No. 6, 2619-2692, 1998.
doi:10.1109/18.720551

24. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transctions on Information Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083

25. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

26. Cai, T. T., G. Xu, and J. Zhang, "On recovery of sparse signals via l1 minimization," IEEE Transactions on Information Theory, Vol. 55, No. 7, 3388-3397, 2009.
doi:10.1109/TIT.2009.2021377

27. Donoho, D. L. and X. Huo, "Uncertainty principles and ideal atomic decomposition," IEEE Transactions on Information Theory, Vol. 47, No. 7, 2845-2862, 2001.
doi:10.1109/18.959265

28. Karabulut, G. Z. and A. Yongacoglu, "Sparse channel estimation using orthogonal matching pursuit algorithm," IEEE 60th Vehicular Technology Conference, IEEE VTC2004-Fall, 3880-3884, 2004.
doi:10.1109/VETECF.2004.1404804

29. Tropp, J. A., "Greed is good: Algorithmic results for sparse approximation," IEEE Transactions on Information Theory, Vol. 50, No. 10, 2231-2242, 2004.
doi:10.1109/TIT.2004.834793