Vol. 22
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-12-02
Image Compressed Sensing Based on Data-Driven Adaptive Redundant Dictionaries
By
Progress In Electromagnetics Research M, Vol. 22, 73-89, 2012
Abstract
Finding sparsifying transforms is an important prerequisite of compressed sensing (CS) theory. It is directly related to the reconstruction accuracy. In this work, we propose a new dictionary learning (DL) algorithm to improve the accuracy of CS reconstruction. In the proposed algorithm, Least Angle Regression (LARS) algorithm and an approximate SVD method (ASVD) are respectively used in the two stages. In addition, adaptive sparsity constraint is used in the sparse representation stage, to obtain sparser representation coefficient, which further improves the dictionary update stage. With these data-driven adaptive dictionaries as sparsifying transforms for image compressed sensing, results of experiments demonstrate noteworthy outperformance in peak signal-to-noisy ratio (PSNR), compared to CS based on dictionaries learned by K-SVD, in the sampling rate of 0.2-0.5. Besides, visual appearance of reconstruction detail at low sampling rate improves, for reducing of `block' effect.
Citation
Zi Wei Ni, Meixiang Zhang, Jing Li, and Qicong Wang, "Image Compressed Sensing Based on Data-Driven Adaptive Redundant Dictionaries," Progress In Electromagnetics Research M, Vol. 22, 73-89, 2012.
doi:10.2528/PIERM11093004
References

1. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083        Google Scholar

2. Donoho, D., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582        Google Scholar

3. Candes, E. J. and T. Tao, "Decoding by linear programming ," IEEE Trans. Inf. Theory, Vol. 51, No. 12, 4203-4215, 2005.
doi:10.1109/TIT.2005.858979        Google Scholar

4. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Process. Mag., Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731        Google Scholar

5. Davenport, M., M. Duarte, Y. C. Eldar, and G. Kutyniok, Introduction to Compressed Sensing, Cambridge University Press, 2011.

6. Fornasier, M. and H. Rauhut, Compressive Sensing, Springer, 2011.

7. Tsaig, Y. and D. L. Donoho, "Extensions of compressed sensing," Signal Processing, Vol. 86, No. 3, 549-571, 2006.
doi:10.1016/j.sigpro.2005.05.029        Google Scholar

8. Gan, L., "Block compressed sensing of natural images," Proc. Int. Conf. on Digital Signal Processing, 403-406, Cardiff, UK, 2007.        Google Scholar

9. Lustig, M., D. Donoho, and J. M. Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magn. Reson. Med., Vol. 58, No. 6, 1182-1195, 2007.
doi:10.1002/mrm.21391        Google Scholar

10. Candes, E. J., Y. C. Eldar, D. Needell, and P. Randall, "Compressed sensing with coherent and redundant dictionaries," Applied and Computational Harmonic Analysis, Vol. 31, No. 1, 59-73, 2010.
doi:10.1016/j.acha.2010.10.002        Google Scholar

11. Rauhut, H., K. Schnass, and P. Vandergheynst, "Compressed sensing and redundant dictionaries," IEEE Trans. Inf. Theory, Vol. 54, No. 5, 2210-2219, 2008.
doi:10.1109/TIT.2008.920190        Google Scholar

12. Chen, S. S., D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM Rev., Vol. 43, No. 1, 129-159, 2001.
doi:10.1137/S003614450037906X        Google Scholar

13. Aharon, M., M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Trans. Signal Processing, Vol. 54, No. 11, 4311-4322, 2006.
doi:10.1109/TSP.2006.881199        Google Scholar

14. Ravishankar, S. and Y. Bresler, "MR image reconstruction from highly undersampled K-space data by dictionary learning," IEEE Trans. Medical Imaging, Vol. 30, No. 5, 1028-1041, 2011.
doi:10.1109/TMI.2010.2090538        Google Scholar

15. Bilgin, A., Y. Kim, F. Liu, and M. S. Nadar, "Dictionary design for compressed sensing MRI," Proc. ISMRM, 2010.        Google Scholar

16. Xu, T. T., Z. Yang, and X. Shao, "Adaptive compressed sensing of speech signal based on data-driven dictionary," Conf. 15-th Asia-Pacific, 2009.        Google Scholar

17. Pati, Y. C., R. Rezaiifar, and P. S. Krishnaprasad, "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition," Proc. AsilomarSS, Vol. 1, 40-44, 1993.        Google Scholar

18. Tibshirani , R., "Regression shrinkage and selection via the lasso," J. Royal. Statist. Soc. B, Vol. 58, No. 1, 267-288, 1996.        Google Scholar

19. Gorodnitsky, I. and B. Rao, "Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm," IEEE Trans. Signal Processing, Vol. 45, No. 3, 600-616, 1997.
doi:10.1109/78.558475        Google Scholar

20. Wipf, D. P. and B. D. Rao, "Sparse Bayesian learning for basis selection," IEEE Trans. Signal Processing, Vol. 52, No. 8, 2153-2164, 2004.
doi:10.1109/TSP.2004.831016        Google Scholar

21. Tropp, J. A. and S. J.Wright, "Computational methods for sparse solution of linear inverse problems," Proc. IEEE (Special Issue on Applications of Sparse Representation and Compressive Sensing), Vol. 98, No. 6, 948-958, 2010.        Google Scholar

22. Elad, M. and M. Aharon, "Image denoising via sparse and redundant representations over learned dictionaries," IEEE Trans. Image Process., Vol. 15, No. 12, 3736-3745, 2006.
doi:10.1109/TIP.2006.881969        Google Scholar

23. Protter, M. and M. Elad, "Image sequence denoising via sparse and redundant representations," IEEE Trans. Image Process. , Vol. 18, No. 1, 27-36, 2009.
doi:10.1109/TIP.2008.2008065        Google Scholar

24. Mairal, J., M. Elad, and G. Sapiro, "Sparse representation for color image restoration," IEEE Trans. Image Process., Vol. 17, No. 1, 53-69, 2008.
doi:10.1109/TIP.2007.911828        Google Scholar

25. Mairal, J., G. Sapiro, and M. Elad, "Learning multiscale sparse representations for image and video restoration," SIAM Multiscale Model. Simulat., Vol. 7, No. 1, 214-241, 2008.
doi:10.1137/070697653        Google Scholar

26. Bryt, O. and M. Elad, "Compression of ficial images using the K-SVD algorithm," J. Visual Communication and Image Representation, Vol. 19, No. 4, 270-283, 2008.
doi:10.1016/j.jvcir.2008.03.001        Google Scholar

27. Olshausen, B. A. and D. J. Field, "Sparse coding with an overcomplete basis set: A strategy employed by V1?," Vis. Res., Vol. 37, No. 23, 3311-3325, 1997.
doi:10.1016/S0042-6989(97)00169-7        Google Scholar

28. Engan, K., S. Aase, and J. Hakon Husoy, "Method of optimal directions for frame design," Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP'99), 1999.        Google Scholar

29. Tosic, I. and P. Frossard, "Dictionary learning," IEEE Signal Process. Mag., Vol. 28, No. 2, 27-38, 2011.
doi:10.1109/MSP.2010.939537        Google Scholar

30. Donoho, D. L. and M. Elad, "Optimally sparse representation in general (non-orthogonal) dictionaries via minimization," Proc. Nat. Aca. Sci., Vol. 100, No. 5, 2197-2202, 2003.
doi:10.1073/pnas.0437847100        Google Scholar

31. Gribonval, R. and M. Nielsen, "Sparse representation in unions of bases," IEEE Trans. Inf. Theory, Vol. 49, No. 12, 3320-3325, 2003.
doi:10.1109/TIT.2003.820031        Google Scholar

32. Tropp, J. A., "Greed is good: Algorithmic results for sparse approximation," IEEE Trans. Inf. Theory, Vol. 50, No. 10, 2231-2242, 2004.
doi:10.1109/TIT.2004.834793        Google Scholar

33. Efron, B., T. Hastie, I. Johnston, and R. Tibshirani, "Least angle regression," Ann. Statist., Vol. 32, No. 2, 407-499, 2004.
doi:10.1214/009053604000000067        Google Scholar

34. Rubinstein, R., M. Zibulevsky, and M. Elad, "Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit," Technical Report-CS Technion., 2008.        Google Scholar

35. Chen, Y., X. Ye, and F. Huang, "A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data," Inverse Problems Image, Vol. 4, No. 2, 223-240, 2010.
doi:10.3934/ipi.2010.4.223        Google Scholar

36. Ji, S., Y. Xue, and L. Carin, "Bayesian compressive sensing ," IEEE Trans. Signal Processing, Vol. 56, No. 6, 2346-2356, 2008.
doi:10.1109/TSP.2007.914345        Google Scholar

37. Babacan, S. D., R. Molina, and A. K. Katsaggelos, "Bayesian compressive sensing using Laplace priors," IEEE Trans. Image Process., Vol. 19, No. 1, 53-63, 2010.
doi:10.1109/TIP.2009.2032894        Google Scholar