1. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083 Google Scholar
2. Donoho, D., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582 Google Scholar
3. Candes, E. J. and T. Tao, "Decoding by linear programming ," IEEE Trans. Inf. Theory, Vol. 51, No. 12, 4203-4215, 2005.
doi:10.1109/TIT.2005.858979 Google Scholar
4. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Process. Mag., Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731 Google Scholar
5. Davenport, M., M. Duarte, Y. C. Eldar, and G. Kutyniok, Introduction to Compressed Sensing, Cambridge University Press, 2011.
6. Fornasier, M. and H. Rauhut, Compressive Sensing, Springer, 2011.
7. Tsaig, Y. and D. L. Donoho, "Extensions of compressed sensing," Signal Processing, Vol. 86, No. 3, 549-571, 2006.
doi:10.1016/j.sigpro.2005.05.029 Google Scholar
8. Gan, L., "Block compressed sensing of natural images," Proc. Int. Conf. on Digital Signal Processing, 403-406, Cardiff, UK, 2007. Google Scholar
9. Lustig, M., D. Donoho, and J. M. Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magn. Reson. Med., Vol. 58, No. 6, 1182-1195, 2007.
doi:10.1002/mrm.21391 Google Scholar
10. Candes, E. J., Y. C. Eldar, D. Needell, and P. Randall, "Compressed sensing with coherent and redundant dictionaries," Applied and Computational Harmonic Analysis, Vol. 31, No. 1, 59-73, 2010.
doi:10.1016/j.acha.2010.10.002 Google Scholar
11. Rauhut, H., K. Schnass, and P. Vandergheynst, "Compressed sensing and redundant dictionaries," IEEE Trans. Inf. Theory, Vol. 54, No. 5, 2210-2219, 2008.
doi:10.1109/TIT.2008.920190 Google Scholar
12. Chen, S. S., D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM Rev., Vol. 43, No. 1, 129-159, 2001.
doi:10.1137/S003614450037906X Google Scholar
13. Aharon, M., M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Trans. Signal Processing, Vol. 54, No. 11, 4311-4322, 2006.
doi:10.1109/TSP.2006.881199 Google Scholar
14. Ravishankar, S. and Y. Bresler, "MR image reconstruction from highly undersampled K-space data by dictionary learning," IEEE Trans. Medical Imaging, Vol. 30, No. 5, 1028-1041, 2011.
doi:10.1109/TMI.2010.2090538 Google Scholar
15. Bilgin, A., Y. Kim, F. Liu, and M. S. Nadar, "Dictionary design for compressed sensing MRI," Proc. ISMRM, 2010. Google Scholar
16. Xu, T. T., Z. Yang, and X. Shao, "Adaptive compressed sensing of speech signal based on data-driven dictionary," Conf. 15-th Asia-Pacific, 2009. Google Scholar
17. Pati, Y. C., R. Rezaiifar, and P. S. Krishnaprasad, "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition," Proc. AsilomarSS, Vol. 1, 40-44, 1993. Google Scholar
18. Tibshirani , R., "Regression shrinkage and selection via the lasso," J. Royal. Statist. Soc. B, Vol. 58, No. 1, 267-288, 1996. Google Scholar
19. Gorodnitsky, I. and B. Rao, "Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm," IEEE Trans. Signal Processing, Vol. 45, No. 3, 600-616, 1997.
doi:10.1109/78.558475 Google Scholar
20. Wipf, D. P. and B. D. Rao, "Sparse Bayesian learning for basis selection," IEEE Trans. Signal Processing, Vol. 52, No. 8, 2153-2164, 2004.
doi:10.1109/TSP.2004.831016 Google Scholar
21. Tropp, J. A. and S. J.Wright, "Computational methods for sparse solution of linear inverse problems," Proc. IEEE (Special Issue on Applications of Sparse Representation and Compressive Sensing), Vol. 98, No. 6, 948-958, 2010. Google Scholar
22. Elad, M. and M. Aharon, "Image denoising via sparse and redundant representations over learned dictionaries," IEEE Trans. Image Process., Vol. 15, No. 12, 3736-3745, 2006.
doi:10.1109/TIP.2006.881969 Google Scholar
23. Protter, M. and M. Elad, "Image sequence denoising via sparse and redundant representations," IEEE Trans. Image Process. , Vol. 18, No. 1, 27-36, 2009.
doi:10.1109/TIP.2008.2008065 Google Scholar
24. Mairal, J., M. Elad, and G. Sapiro, "Sparse representation for color image restoration," IEEE Trans. Image Process., Vol. 17, No. 1, 53-69, 2008.
doi:10.1109/TIP.2007.911828 Google Scholar
25. Mairal, J., G. Sapiro, and M. Elad, "Learning multiscale sparse representations for image and video restoration," SIAM Multiscale Model. Simulat., Vol. 7, No. 1, 214-241, 2008.
doi:10.1137/070697653 Google Scholar
26. Bryt, O. and M. Elad, "Compression of ficial images using the K-SVD algorithm," J. Visual Communication and Image Representation, Vol. 19, No. 4, 270-283, 2008.
doi:10.1016/j.jvcir.2008.03.001 Google Scholar
27. Olshausen, B. A. and D. J. Field, "Sparse coding with an overcomplete basis set: A strategy employed by V1?," Vis. Res., Vol. 37, No. 23, 3311-3325, 1997.
doi:10.1016/S0042-6989(97)00169-7 Google Scholar
28. Engan, K., S. Aase, and J. Hakon Husoy, "Method of optimal directions for frame design," Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP'99), 1999. Google Scholar
29. Tosic, I. and P. Frossard, "Dictionary learning," IEEE Signal Process. Mag., Vol. 28, No. 2, 27-38, 2011.
doi:10.1109/MSP.2010.939537 Google Scholar
30. Donoho, D. L. and M. Elad, "Optimally sparse representation in general (non-orthogonal) dictionaries via minimization," Proc. Nat. Aca. Sci., Vol. 100, No. 5, 2197-2202, 2003.
doi:10.1073/pnas.0437847100 Google Scholar
31. Gribonval, R. and M. Nielsen, "Sparse representation in unions of bases," IEEE Trans. Inf. Theory, Vol. 49, No. 12, 3320-3325, 2003.
doi:10.1109/TIT.2003.820031 Google Scholar
32. Tropp, J. A., "Greed is good: Algorithmic results for sparse approximation," IEEE Trans. Inf. Theory, Vol. 50, No. 10, 2231-2242, 2004.
doi:10.1109/TIT.2004.834793 Google Scholar
33. Efron, B., T. Hastie, I. Johnston, and R. Tibshirani, "Least angle regression," Ann. Statist., Vol. 32, No. 2, 407-499, 2004.
doi:10.1214/009053604000000067 Google Scholar
34. Rubinstein, R., M. Zibulevsky, and M. Elad, "Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit," Technical Report-CS Technion., 2008. Google Scholar
35. Chen, Y., X. Ye, and F. Huang, "A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data," Inverse Problems Image, Vol. 4, No. 2, 223-240, 2010.
doi:10.3934/ipi.2010.4.223 Google Scholar
36. Ji, S., Y. Xue, and L. Carin, "Bayesian compressive sensing ," IEEE Trans. Signal Processing, Vol. 56, No. 6, 2346-2356, 2008.
doi:10.1109/TSP.2007.914345 Google Scholar
37. Babacan, S. D., R. Molina, and A. K. Katsaggelos, "Bayesian compressive sensing using Laplace priors," IEEE Trans. Image Process., Vol. 19, No. 1, 53-63, 2010.
doi:10.1109/TIP.2009.2032894 Google Scholar