Vol. 24
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-03-13
Analytical Computation of Reluctance Synchronous Machine Inductances Under Different Eccentricity Faults
By
Progress In Electromagnetics Research M, Vol. 24, 29-44, 2012
Abstract
In the previous works, based on winding function theory, the calculation of reluctance machine inductances is carried out using numerical integration or inexact analytical equations based on approximated Fourier series expansions of the inverse air gap function. In this paper, development in Fourier series of the inverse air gap function has not been used, but a closed form analytical equation is developed for inductances calculation. This leads to a very precise computation of the inductances of the faulted machine and more accurate results. Moreover, all space harmonics ignored by the Fourier series expansions of the inverse air gap function will be included in the model. Derived comprehensive equation allows calculating time varying inductances of reluctance machines with different static, dynamic and mixed eccentricities in the frame of a single program. Inductances obtained by the proposed method are compared to those obtained from FE results. A satisfactory match was found between them.
Citation
Hamidreza Akbari, "Analytical Computation of Reluctance Synchronous Machine Inductances Under Different Eccentricity Faults," Progress In Electromagnetics Research M, Vol. 24, 29-44, 2012.
doi:10.2528/PIERM11102005
References

1. Faiz, J. and B. M. Ebrahimi, "Mixed fault diagnosis in three-phase squirrel-cage induction motor using analysis of air-gap magnetic field," Progress In Electromagnetics Research, Vol. 64, 239-255, 2006.
doi:10.2528/PIER06080201        Google Scholar

2. Faiz, J. and B. M. Ebrahimi, "Static eccentricity fault diagnosis in an accelerating no-load three-phase saturated squirrel-cage induction motor," Progress In Electromagnetics Research B, Vol. 10, 35-54, 2008.
doi:10.2528/PIERB08081702        Google Scholar

3. Meshgin-Kelk, H., J. Milimonfared, and H. Toliyat, "Interbar currents and axial fluxes in healthy and faulty induction motors," IEEE Transactions on Industry Applications, Vol. 40, No. 1, 128-134, 2004.
doi:10.1109/TIA.2003.821792        Google Scholar

4. Faiz, J., B. M. Ebrahimi, and M. B. B. Sharifian, "Different faults and their diagnosis techniques in three-phase squirrel-cage induction motors --- A review," Electromagnetics, Vol. 26, No. 7, 543-569, 2006.
doi:10.1080/02726340600873003        Google Scholar

5. Faiz, J., B. M. Ebrahimi, and M. B. B. Sharifian, "Time stepping finite element analysis of rotor broken bars fault in a three-phase squirrel-cage induction motor," Progress In Electromagnetics Research, Vol. 68, 53-70, 2007.
doi:10.2528/PIER06080903        Google Scholar

6. Torkaman, H. and E. Afjei, "FEM analysis of angular misalignment fault in SRM magnetostatic characteristics," Progress In Electromagnetics Research, Vol. 104, 31-48, 2010.
doi:10.2528/PIER10041406        Google Scholar

7. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault," Progress In Electromagnetics Research, Vol. 95, 2009.        Google Scholar

8. Torkaman, H. and E. Afjei, "Hybrid method of obtaining degrees of freedom for radial air gap length in SRM under normal and faulty conditions based on magnetostatic model," Progress In Electromagnetics Research, Vol. 100, 3754, 2010.        Google Scholar

9. De Bortoli, M. J., S. J. Salon, and C. J. Slavic, "Effect of rotor eccentricity and parallel winding on induction behavior: A study using ¯nite element analysis," IEEE Transactions on Magnetics, Vol. 29, No. 2, 1676-1682, 1993.
doi:10.1109/20.250728        Google Scholar

10. Toliyat, H., T. A. Lipo, and J. C. White, "Analysis of a concentrated winding induction machine for adjustable speed drive applications, part-1 (motor analysis)," IEEE Transactions on Energy Conversion, Vol. 6, 679-692, 1991.
doi:10.1109/60.103641        Google Scholar

11. Milimonfared, J., H. M. Kelk, A. Der Minassians, S. Nandi, and H. A. Toliyat, "A novel approach for broken bar detection in cage induction motors," IEEE Transactions on Industry Applications, Vol. 35, 1000-1006, 1999.
doi:10.1109/28.793359        Google Scholar

12. Joksimovic, M. G. and J. Penman, "The detection of inter turn short circuits in the stator windings of operating motors," IEEE Transactions on Industry Application, Vol. 47, 1078-1084, 2000.        Google Scholar

13. Al-Nuaim, N. A. and H. Toliyat, "A novel method for modeling dynamic air-gap eccentricity in synchronous machines based on modified winding function theory," IEEE Transactions on Energy Conversion, Vol. 13, 156-162, 1998.
doi:10.1109/60.678979        Google Scholar

14. Tabatabaei, I., J. Faiz, H. Lesani, and M. T. Nabavi-Razavi, "Modeling and simulation of a salient pole synchronous generator with dynamic eccentricity using modified winding function approach," IEEE Transactions on Magnetics, Vol. 40, No. 3, May 2004.
doi:10.1109/TMAG.2004.826611        Google Scholar

15. Joksimovic, G. M., "Dynamic simulation of cage induction machine with air gap eccentricity," IEE Proc. Electr. Power Appl., Vol. 152, No. 4, 803-811, Jul. 2005.
doi:10.1049/ip-epa:20041229        Google Scholar

16. Faiz, J., B. M. Ebrahimi, and M. Valavi, "Mixed eccentricity fault diagnosis in salient pole synchronous generator using modified winding function method," Progress In Electromagnetics Research B, Vol. 11, 155-172, 2009.
doi:10.2528/PIERB08110903        Google Scholar

17. Akbari, H., J. Milimonfared, and H. Meshgin Kelk, "Axial static eccentricity detection in induction machines by wavelet technique," International Review of Electrical Engineering, Vol. 5, No. 3, 2010.        Google Scholar

18. Akbari, H., H. Meshgin Kelk, and J. Milimonfared, "Extension of winding function theory for radial and axial non-uniform air gap in salient pole synchronous machines," Progress In Electromagnetics Research, Vol. 114, 407-428, 2011.        Google Scholar

19. Lubin, T. and T. Hamiti, "Comparison between finite-element analysis and winding function theory for inductances and torque calculation of a synchronous reluctance machine," IEEE Transactions on Magnetics, Vol. 43, No. 8, 2007.
doi:10.1109/TMAG.2007.900404        Google Scholar

20. Neti, P. and S. Nandi, "Performance analysis of a reluctance synchronous motor under abnormal operating conditions," Can. J. Elec. Comput. Eng., Vol. 33, No. 2, 2008.        Google Scholar

21. Hamiti, T., T. Lubin, and A. Rezzoug, "A simple and efficient tool for design analysis of synchronous reluctance motor," IEEE Transactions on Magnetics, Vol. 44, No. 12, Dec. 2008.
doi:10.1109/TMAG.2008.2004536        Google Scholar

22. Obe, E. S., "Direct computation of AC machine inductances based on winding function theory," Energy Conversion and Management, Vol. 50, 539-542, 2009.
doi:10.1016/j.enconman.2008.10.017        Google Scholar

23. Hamiti, T., T. Lubin, L. Baghli, and A. Rezzoug, "Modeling of a synchronous reluctance machine accounting for space harmonics in view of torque ripple minimization," Mathematics and Computers in Simulation, Vol. 81, 354-366, 2010.
doi:10.1016/j.matcom.2010.07.024        Google Scholar

24. Akbari, H., J. Milimonfared, and H. Meshgin Kelk, "Improved MWFA for computation of salient pole machine inductances," International Review of Electrical Engineering, Vol. 5, No. 6, 2593-2600, 2010.        Google Scholar

25. Ostovic, V., "Computer Aided Analysis of Electrical Machines, A Mathematical Approach," Prentice Hall, 1994.        Google Scholar