1. Faiz, J. and B. M. Ebrahimi, "Mixed fault diagnosis in three-phase squirrel-cage induction motor using analysis of air-gap magnetic field," Progress In Electromagnetics Research, Vol. 64, 239-255, 2006.
doi:10.2528/PIER06080201 Google Scholar
2. Faiz, J. and B. M. Ebrahimi, "Static eccentricity fault diagnosis in an accelerating no-load three-phase saturated squirrel-cage induction motor," Progress In Electromagnetics Research B, Vol. 10, 35-54, 2008.
doi:10.2528/PIERB08081702 Google Scholar
3. Meshgin-Kelk, H., J. Milimonfared, and H. Toliyat, "Interbar currents and axial fluxes in healthy and faulty induction motors," IEEE Transactions on Industry Applications, Vol. 40, No. 1, 128-134, 2004.
doi:10.1109/TIA.2003.821792 Google Scholar
4. Faiz, J., B. M. Ebrahimi, and M. B. B. Sharifian, "Different faults and their diagnosis techniques in three-phase squirrel-cage induction motors --- A review," Electromagnetics, Vol. 26, No. 7, 543-569, 2006.
doi:10.1080/02726340600873003 Google Scholar
5. Faiz, J., B. M. Ebrahimi, and M. B. B. Sharifian, "Time stepping finite element analysis of rotor broken bars fault in a three-phase squirrel-cage induction motor," Progress In Electromagnetics Research, Vol. 68, 53-70, 2007.
doi:10.2528/PIER06080903 Google Scholar
6. Torkaman, H. and E. Afjei, "FEM analysis of angular misalignment fault in SRM magnetostatic characteristics," Progress In Electromagnetics Research, Vol. 104, 31-48, 2010.
doi:10.2528/PIER10041406 Google Scholar
7. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault," Progress In Electromagnetics Research, Vol. 95, 2009. Google Scholar
8. Torkaman, H. and E. Afjei, "Hybrid method of obtaining degrees of freedom for radial air gap length in SRM under normal and faulty conditions based on magnetostatic model," Progress In Electromagnetics Research, Vol. 100, 3754, 2010. Google Scholar
9. De Bortoli, M. J., S. J. Salon, and C. J. Slavic, "Effect of rotor eccentricity and parallel winding on induction behavior: A study using ¯nite element analysis," IEEE Transactions on Magnetics, Vol. 29, No. 2, 1676-1682, 1993.
doi:10.1109/20.250728 Google Scholar
10. Toliyat, H., T. A. Lipo, and J. C. White, "Analysis of a concentrated winding induction machine for adjustable speed drive applications, part-1 (motor analysis)," IEEE Transactions on Energy Conversion, Vol. 6, 679-692, 1991.
doi:10.1109/60.103641 Google Scholar
11. Milimonfared, J., H. M. Kelk, A. Der Minassians, S. Nandi, and H. A. Toliyat, "A novel approach for broken bar detection in cage induction motors," IEEE Transactions on Industry Applications, Vol. 35, 1000-1006, 1999.
doi:10.1109/28.793359 Google Scholar
12. Joksimovic, M. G. and J. Penman, "The detection of inter turn short circuits in the stator windings of operating motors," IEEE Transactions on Industry Application, Vol. 47, 1078-1084, 2000. Google Scholar
13. Al-Nuaim, N. A. and H. Toliyat, "A novel method for modeling dynamic air-gap eccentricity in synchronous machines based on modified winding function theory," IEEE Transactions on Energy Conversion, Vol. 13, 156-162, 1998.
doi:10.1109/60.678979 Google Scholar
14. Tabatabaei, I., J. Faiz, H. Lesani, and M. T. Nabavi-Razavi, "Modeling and simulation of a salient pole synchronous generator with dynamic eccentricity using modified winding function approach," IEEE Transactions on Magnetics, Vol. 40, No. 3, May 2004.
doi:10.1109/TMAG.2004.826611 Google Scholar
15. Joksimovic, G. M., "Dynamic simulation of cage induction machine with air gap eccentricity," IEE Proc. Electr. Power Appl., Vol. 152, No. 4, 803-811, Jul. 2005.
doi:10.1049/ip-epa:20041229 Google Scholar
16. Faiz, J., B. M. Ebrahimi, and M. Valavi, "Mixed eccentricity fault diagnosis in salient pole synchronous generator using modified winding function method," Progress In Electromagnetics Research B, Vol. 11, 155-172, 2009.
doi:10.2528/PIERB08110903 Google Scholar
17. Akbari, H., J. Milimonfared, and H. Meshgin Kelk, "Axial static eccentricity detection in induction machines by wavelet technique," International Review of Electrical Engineering, Vol. 5, No. 3, 2010. Google Scholar
18. Akbari, H., H. Meshgin Kelk, and J. Milimonfared, "Extension of winding function theory for radial and axial non-uniform air gap in salient pole synchronous machines," Progress In Electromagnetics Research, Vol. 114, 407-428, 2011. Google Scholar
19. Lubin, T. and T. Hamiti, "Comparison between finite-element analysis and winding function theory for inductances and torque calculation of a synchronous reluctance machine," IEEE Transactions on Magnetics, Vol. 43, No. 8, 2007.
doi:10.1109/TMAG.2007.900404 Google Scholar
20. Neti, P. and S. Nandi, "Performance analysis of a reluctance synchronous motor under abnormal operating conditions," Can. J. Elec. Comput. Eng., Vol. 33, No. 2, 2008. Google Scholar
21. Hamiti, T., T. Lubin, and A. Rezzoug, "A simple and efficient tool for design analysis of synchronous reluctance motor," IEEE Transactions on Magnetics, Vol. 44, No. 12, Dec. 2008.
doi:10.1109/TMAG.2008.2004536 Google Scholar
22. Obe, E. S., "Direct computation of AC machine inductances based on winding function theory," Energy Conversion and Management, Vol. 50, 539-542, 2009.
doi:10.1016/j.enconman.2008.10.017 Google Scholar
23. Hamiti, T., T. Lubin, L. Baghli, and A. Rezzoug, "Modeling of a synchronous reluctance machine accounting for space harmonics in view of torque ripple minimization," Mathematics and Computers in Simulation, Vol. 81, 354-366, 2010.
doi:10.1016/j.matcom.2010.07.024 Google Scholar
24. Akbari, H., J. Milimonfared, and H. Meshgin Kelk, "Improved MWFA for computation of salient pole machine inductances," International Review of Electrical Engineering, Vol. 5, No. 6, 2593-2600, 2010. Google Scholar
25. Ostovic, V., "Computer Aided Analysis of Electrical Machines, A Mathematical Approach," Prentice Hall, 1994. Google Scholar