Vol. 25
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-07-06
A Broadband Metal-Mesh Half-Wave Plate for Millimetre Wave Linear Polarisation Rotation
By
Progress In Electromagnetics Research M, Vol. 25, 101-114, 2012
Abstract
We present a polarisation rotator based on a dielectrically embedded metal Mesh Half Wave Plate (MHWP) working in the W-band frequency range (75-110 GHz). The device was realised using metallic grids with sub-wavelength anisotropic geometries able to mimic the behaviour of natural birefringent materials. The device was designed using a combination of transmission line codes and finite-element analysis able to achieve phase accuracy down to a fraction of degree. Very accurate intensity and phase measurements were carried out using coherent radiation from a Vector Network Analyser (VNA). The presented device performs better and it is much thinner than previous devices having reduced the number of grids by a factor two and minimised their inductive losses. The new mesh HWP has excellent performances in terms of differential phase-shift flatness and cross-polarisation, respectively 180.4±2.9° and -28 dB across a 25% bandwidth.
Citation
Giampaolo Pisano, Ming Wah Ng, Victor Haynes, and Bruno Maffei, "A Broadband Metal-Mesh Half-Wave Plate for Millimetre Wave Linear Polarisation Rotation," Progress In Electromagnetics Research M, Vol. 25, 101-114, 2012.
doi:10.2528/PIERM12051410
References

1. Torres, R. P. and M. F. Catedra, "Analysis and design of a two-octave polarization rotator for microwave frequency," IEEE Trans. Microw. Ant. Prop., Vol. 41, No. 2, 208-213, 1993.
doi:10.1109/8.214612

2. Gimeno, B., J. L. Cruz, E. A. Navarro, and V. Such, "A polarizer rotator system for three-dimensional oblique incidence," IEEE Trans. Microw. Ant. Prop., Vol. 42, No. 7, 912-919, 1994.
doi:10.1109/8.299592

3. Lech, R., M. Mazur, and J. Mazur, "Analysis and design of a polarizer rotator system," IEEE Trans. Microw. Ant. Prop., Vol. 56, No. 3, 844-847, 2008.
doi:10.1109/TAP.2008.916973

4. Wu, T., "Meander-line polarizer for arbitrary rotation of linear polarization," IEEE Micr. Guid. Wav. Lett., Vol. 4, No. 6, 199-201, 1994.
doi:10.1109/75.294292

5. Pancharatnam, S., "Achromatic combinations of birefringent plates," Raman Research Inst. Bangalore Memoir, Vol. 71, 137-144, 1955.

6. Murray, A. G., A. M. Flett, G. Murray, and P. A. R. Ade, "High effciency half-wave plates for submillimetre polarimetry," Infr. Phys., Vol. 33, 113-125, 1992.
doi:10.1016/0020-0891(92)90002-B

7. Pisano, G., G. Savini, P. A. R. Ade, V. Haynes, and W. K. Gear, "Achromatic half-wave plate for submillimetre instruments in CMB astronomy: Experimental characterisation," Applied Optics, Vol. 45, No. 27, 6982-6989, 2006.
doi:10.1364/AO.45.006982

8. Savini, G., G. Pisano, and P. A. R. Ade, "Achromatic half-wave plate for submillimetre instruments in CMB astronomy: Modelling and simulation," Applied Optics, Vol. 45, No. 35, 8907-8915, 2006.
doi:10.1364/AO.45.008907

9. Pisano, G., G. Savini, P. Ade, and V. Haynes, "A metal-mesh achromatic half-wave plate for use at submillimetre wavelengths," Applied Optics, Vol. 47, No. 33, 6251-6256, 2008.
doi:10.1364/AO.47.006251

10. Ade, P. A. R., G. Pisano, C. E. Tucker, and S. O. Weaver, "A review of metal mesh filters," Proc. SPIE, Vol. 6275, U2750, 2006.

11. Zhang, J., P. A. R. Ade, P. Mauskopf, G. Savini, L. Moncelsi, and N. Whitehouse, "Polypropylene embedded metal mesh broadband achromatic half-wave plate for millimeter wavelengths," Applied Optics, Vol. 50, No. 21, 3750-20757, 2011.
doi:10.1364/AO.50.003750

12. Pisano, G., M. W. Ng, V. Haynes, and B. Maffei, "A broadband photolithographic polariser for millimetre wave applications," PIERS Proceedings, 1748-1751, Kuala Lumpur, Malaysia, March 27-30, 2012.

13. Maffei, B., G. Pisano, M. W. Ng, and V. Haynes, "Millimetre wave photolithographic polariser beam impact," PIERS Proceedings, 1761-1765, Kuala Lumpur, Malaysia, March 27-30, 2012.

14. Shatrow, A. D., A. D. Chuprin, and A. N. Sivov, "Constructing the phase converters consisting of arbitrary number of translucent surfaces," IEEE Trans. Antennas Propag., Vol. 43, No. 1, 1995.
doi:10.1109/8.366360

15. Lerner, D. S., "A wave polarization converter for circular polarization," IEEE Trans. Antennas Propag., Vol. 15, 3-7, 1964.

16. Marcuvitz, N., Waveguide Handbook, M.I.T. Rad. Lab. Ser., Mc.Graw-Hill, 280-290, 1951.

17. Ulrich, R., "Far-infrared properties of metallic mesh and its complementary structure," Infrared Physics, Vol. 7, 37-50, 1967.
doi:10.1016/0020-0891(67)90028-0

18., Ansys High Frequency Structure Simulator: www.ansys.com..
doi:10.1016/0020-0891(67)90028-0

19., Emerson & Cuming, Microwave Products, http://www.eccosorb.com/..
doi:10.1016/0020-0891(67)90028-0