1. Niu, Z., Y. Wu, J. Gong, and Z. Yang, "Cell zooming for cost-efficient green cellular networks," IEEE Communications Magazine, 74-79, Nov. 2010.. Google Scholar
2. Auer, G., V. Giannini, I. Godor, P. Skillermark, M. Olsson, M. Imran, D. Sabella, M. Gonzalez, C. Desset, and O. Blume, "Cellular energy e±ciency evaluation framework," IEEE Vehicular Technology Conference, VTC Spring, 1-6, May 2011. Google Scholar
3. Xiong, C., G. Li, S. Zhang, Y. Chen, and S. Xu, "Energy- and spectral-efficiency tradeoff in downlink OFDMA networks," IEEE Transactions on Wireless Communications, Vol. 10, No. 11, 3874-3885, Nov. 2011.
doi:10.1109/TWC.2011.091411.110249 Google Scholar
4. Guo, W. and T. O'Farrell, "Relay deployment in cellular networks: Planning and optimization," IEEE Journal on Selected Areas in Communications (JSAC), Sep. 2012. Google Scholar
5. Khirallah, C. and J. Thompson, "Energy and cost impact of relay and femtocell deployments in LTE-advanced," IET Communication, Vol. 5, 2617-2628, Dec. 2011.
doi:10.1049/iet-com.2011.0111 Google Scholar
6. Guo, W. and T. O'Farrell, "Small-net vs. relays in a heterogeneous architecture," Journal of Communications, JCM, 2012. Google Scholar
7. Paulraj, R. N. A. and D. Gore, Introduction to Space-time Wireless Communications, Cambridge University Press, UK, 2003.
8. Holland, O., V. Friderikos, and A. H. Aghvami, "Energy efficient cross band spectrum management for mobile operators," Proc. IEEE Globecom, 2020-2040, Dec. 2010. Google Scholar
9. Christofferson, J., "Energy efficiency by cell reconfiguration:MIMO to non-MIMO and 3-cell sites to omni," Green Wireless Communications and Networks Workshop, GreenNet, May 2010. Google Scholar
10. Alexiou, A. and M. Haardt, "Smart antenna technologies for future wireless systems: Trends and challenges," IEEE Communications Magazine, Vol. 42, 90-97, Sep. 2004.
doi:10.1109/MCOM.2004.1336725 Google Scholar
11. Benedetti, M., G. Oliveri, P. Rocca, and A. Massa, "A fully-adaptive smart antenna prototype: Ideal model and experimental validation in complex interference scenarios," Progress In Electromagnetics Research, Vol. 96, 173-191, 2009.
doi:10.2528/PIER09080904 Google Scholar
12. Martinez-Lorenzo, J., M. Arias, O. Rubinos, J. Gutierrez, and A. Garcia-Pino, "A shaped and reconfigurable reflector antenna with sectorial beams for LMDS base station," IEEE Transactions on Antennas and Propagation, Vol. 54, 1346-1349, Apr. 2006.
doi:10.1109/TAP.2006.872650 Google Scholar
13. Jung, Y. B., "Dual-band reconfirable antenna for base-station applications," Electronics Letters, Vol. 46, 195-196, Feb. 2010.
doi:10.1049/el.2010.2622 Google Scholar
14. Cai, Y., Y. Guo, and P.-Y. Qin, "Frequency switchable printed yagi-uda dipole sub-array for base station antennas," IEEE Transactions on Antennas and Propagation, Vol. 60, 1639-1642, Mar. 2012.
doi:10.1109/TAP.2011.2180337 Google Scholar
15. Edalati, A. and T. A. Denidni, "Reconfigurable beamwidth antenna based on active partially reflective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1087-1090, 2009.
doi:10.1109/LAWP.2009.2033213 Google Scholar
16. Edalati, A., "High-gain reconfigurable sectoral antenna using an active cylindrical FSS structure," IEEE Transactions on Antennas and Propagation, Vol. 59, 2464-2472, 2011.
doi:10.1109/TAP.2011.2152327 Google Scholar
17. 3GPP "TS 25.463: UTRAN iuant interface: Remote electrical tilting (RET) antennas application part (RETAP) signalling (Release 6),", 3GPP, Technical Report, Dec. 2007. Google Scholar
18. Li, G., S. Yang, Y. Chen, and Z.-P. Nie, "A novel electronic beam steering technique in time modulated antenna arrays," Progress In Electromagnetics Research, Vol. 97, 391-405, 2009.
doi:10.2528/PIER09072602 Google Scholar
19. Ford, K. L. and J. M. Rigelsford, "Street furniture antenna radiation pattern control using AMC surfaces," IEEE Transactions on Antennas and Propagation, Vol. 56, 3049-3052, 2008.
doi:10.1109/TAP.2008.928808 Google Scholar
20. Rigelsford, J. M., J. M. Collado, and K. L. Ford, "Radiation steering of a low profile street furniture antenna using an active AMC," Antennas and Propagation Conference, LAPC, 529-532, Loughborough, 2010. Google Scholar
21. Moradi, K. and S. Nikmehr, "A dual-band dual-polarized microstrip array antenna for base stations," Progress In Electromagnetics Research, Vol. 123, 527-541, 2012.
doi:10.2528/PIER11111610 Google Scholar
22. Perikos, G. and J. M. Rigelsford, "An 8 element broadband antenna for AMPS and GSM applications," Proceedings of the Fourth European Conference on Antennas and Propagation, EuCAP, 1-3, Apr. 2010. Google Scholar
23. Peng, H.-L., W.-Y. Yin, J.-F. Mao, D. Huo, X. Hang, and L. Zhou, "A compact dual-polarized broadband antenna with hybrid beam-forming capabilities," Progress In Electromagnetics Research, Vol. 118, 253-271, 2011.
doi:10.2528/PIER11042905 Google Scholar
24. Gesbert, D., H. Bolcskei, D. Gore, and A. Paulraj, "MIMO wireless channels: Capacity and performance prediction," IEEE Global Telecommunications Conference 2000, GLOBECOM'00, 1083-1088, 2000. Google Scholar
25. 3GPP "TR36.814 V9.0.0: Further advancements for E-UTRA physical layer aspects (Release 9),", 3GPP, Technical Report,Mar. 2010. Google Scholar
26. EARTH "WP2.D2.3: Energy efficiency analysis of the reference systems," Energy Aware Radio and Network Technologies (EARTH), Technical Report, Dec. 2010. Google Scholar
27. Ericsson "Summary of downlink performance evaluation,", 3GPP TSG RAN R1-072444, Technical Report, May 2007. Google Scholar
28. Guo, W. and T. O'Farrell, "Green cellular network: Deployment solutions, sensitivity and tradeoffs," IEEE Proc. Wireless Advanced (WiAd), London, UK, Jun. 2011. Google Scholar
29. Dinnis, A. and J. Thompson, "The effects of including wraparound when simulating cellular wireless systems with relaying," IEEE Vehicular Technology Conference, 914-918, Apr. 2007. Google Scholar
30. Hedayati, M., M. Amirijoo, P. Frenger, and J. Moe, "Reducing energy consumption through adaptation of number of active radio units," IEEE Vehicular Technology Conference, May 2011. Google Scholar