Vol. 34
Latest Volume
All Volumes
PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-11-19
A Novel Microstrip Grid Array Antenna with Both High-Gain and Wideband Properties
By
Progress In Electromagnetics Research C, Vol. 34, 215-226, 2013
Abstract
A novel microstrip grid array antenna that is simultaneously high in gain and wide in bandwidth is proposed. To enhance its bandwidth, the antenna adopts elliptically shaped and variably dimensioned radiation elements as well as a linearly tapered ground plane, and is optimized by a parallel genetic algorithm (GA) on a cluster system. A prototype antenna was fabricated and tested. Results of simulation and measurement agree well and show the antenna exhibits encouraging properties, e.g., a maximum gain of approximately tely 15.1 dBi at 5.8 GHz; the |S11| ≤ 10 dB bandwidth and the 3dB gain-drop bandwidth are 25.6% (from 5.03 GHz to 6.51 GHz) and 27.6% (from 5.0 GHz to 6.6 GHz), respectively, of the center frequency, both of which are much wider than that of conventional microstrip grid array antennas. Moreover, the overlap between the antenna's impedance bandwidth and the gain bandwidth results in a wide effective operating frequency bandwidth of 25.6%, which is the largest so far achieved for microstrip grid-array antennas.
Citation
Pan Feng, Xing Chen, Xueyao Ren, Changjun Liu, and Ka-Ma Huang, "A Novel Microstrip Grid Array Antenna with Both High-Gain and Wideband Properties," Progress In Electromagnetics Research C, Vol. 34, 215-226, 2013.
doi:10.2528/PIERC12082920
References

1. Kraus, J. D., "A backward angle-fire array antenna," IEEE Trans. on Antennas Propagat., Vol. 12, 48-50, Jan. 1964.
doi:10.1109/TAP.1964.1138171

2. Conti, R., J. Toth, T. Dowling, and J. Weiss, "The wire grid microstrip antenna," IEEE Trans. on Antennas Propagat., Vol. 29, 157-166, 1981.
doi:10.1109/TAP.1981.1142541

3. Nakano, H., I. Oshima, H. Mimaki, K. Hirose, and J. Yamauchi, "Center fed grid array antennas," IEEE AP-S Int. Symp., 2010-2013, 1995.

4. Nakano, H., T. Kawano, and J. Yamauchi, "A cross-mesh array antenna," 11th international Conference on Antennas and Propagation, 77-20, Apr. 2001.

5. Nakano, H., H. Osada, H. Mimaki, Y. Iitsuka, and J. Yamauchi, "A modified grid array antenna radiating a circularly polarized wave," IEEE 2007 International Symposium on Microwave, Antenna, Propagation, and EMC Technologies for Wireless Communications, 527-530, Aug. 2007.
doi:10.1109/MAPE.2007.4393671

6. Nakano, H., T. Kawano, and J. Yamauchi, "Meander-line grid-array antenna," IEE Proc. - Microw Antennas Propag., Vol. 145, No. 4, Aug. 1998.

7. Nakano, H., H. Osada, and J. Yamauchi, "Strip-type grid array antenna with a two-layer rear-space structure," 7th ISAPE, 58-61, Guilin, China, Oct. 2006.

8. Kawano, T. and H. Nakano, "A grid array antenna with C-figured elements," Electronics and Communications in Japan, Part 1, Vol. 82, No. 1, 58-68, 2002.
doi:10.1002/ecja.1068

9. Nakano, H., T. Kawano, H. Mimaki, and J. Yamauchi, "Analysis of a printed grid array antenna by a fast mom calculation technique," 11th International Conference on Antennas and Propagation, Apr. 17-20, 2001.

10. Nakano, H., I. Oshima, H. Mimaki, K. Hirose, and J. Yamauchi, "Numerical analysis of a grid array antenna," Proc. of ICCS'94, 700-704, Singapore, 1994.

11. Nakano, H., T. Kawano, Y. Kozono, and J. Yamauchi, "A fast MoM calculation technique using sinusoidal basis and testing functions for a wire on a dielectric substrate and its application to meander loop and grid array antennas," IEEE Trans. on Antennas Propagat., Vol. 53, No. 10, 3300-3307, Oct. 2005.
doi:10.1109/TAP.2005.856314

12. Sun, M., Y. P. Zhang, Y. X. Guo, K. M. Chua, and L. L. Wai, "Integration of grid array antenna in chip package for highly integrated 60-GHz radios," IEEE Antennas and Wireless Propag. Lett., Vol. 8, 1364-1366, 2009.
doi:10.1109/LAWP.2009.2039031

13. Chen, X., K. Chen, and K. Huang, "A microstrip grid array antenna optimized by a parallel genetic algorithm," Microwave and Optical Technology Letters, Vol. 50, No. 11, 2976-2978, Nov. 2008.

14. Chen, X., G. Wang, and K. Huang, "A novel wideband and compact microstrip grid array antenna," IEEE Trans. on Antennas Propagat., Vol. 58, No. 2, 596-599, Feb. 2010.
doi:10.1109/TAP.2009.2037769

15. Thors, B., H. Steyskal, and H. Holter, "Broad-band fragmented aperture phased array element design using genetic algorithms," IEEE Trans. on Antennas Propagat., Vol. 53, No. 10, 3280-3287, Oct. 2005.
doi:10.1109/TAP.2005.856340

16. Zhu, X., W. Shao, J.-L. Li, and Y.-L. Dong, "Design and optimization of low RCS patch antennas based on a genetic algorithm," Progress In Electromagnetics Research, Vol. 122, 327-339, 2012.
doi:10.2528/PIER11100703

17. Jain, R. and G. S. Mani, "Dynamic thinning of antenna array using genetic algorithm," Progress In Electromagnetics Research B, Vol. 32, 1-20, 2011.
doi:10.2528/PIERB11042203