Vol. 35
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-11-30
FPGA Implementation of Space-Time Adaptive Processing (STAP) Algorithm for Target Detection in Passive Radars
By
Progress In Electromagnetics Research C, Vol. 35, 35-48, 2013
Abstract
Space-Time Adaptive Processing (STAP) algorithm has recently been used in Passive Bi-static Radars (PBR) because it removes the clutter and non-cooperative transmitter effectively making the target detection easy in harsh environments like air-ground. Real-time implementation of STAP is a very challenging task as it is computationally-intensive, time-critical and resource-hungry process. This paper focuses on the Field-Programmable Gate Array (FPGA) implementation of STAP algorithm for passive radar using FM radio as transmitter of opportunity. The signals of interest were collected using an eight-channel software-defined radar with a uniform circular array (UCA). The STAP processing was simulated using MATLAB and hardware implementation was carried out on a Xilinx Virtex-6 FPGA. The system is tested using experimental radar data. Timing and Power analysis of hardware implementation justifies that FPGA provides a fast and reliable platform for STAP real-time radar processing.
Citation
Zia Ul Mahmood, Mubashir Alam, Khalid Jamil, and Zeyad O. Al-Hekail, "FPGA Implementation of Space-Time Adaptive Processing (STAP) Algorithm for Target Detection in Passive Radars," Progress In Electromagnetics Research C, Vol. 35, 35-48, 2013.
doi:10.2528/PIERC12101003
References

1. Ul Mahmood, Z., M. Alam, K. Jamil, and M. Elnamaky, "Implementation of space-time adaptive processing (STAP) for target detection in passive bi-static radar," PIERS Proceedings, 724-727, Kuala Lumpur, Malaysia, Mar. 27{30, 2012.

2. Ul Mahmood, Z., M. Alam, K. Jamil, and M. Elnamaky, "On modeling and hardware implementation of space-time adaptive processing (STAP) for target detection in passive bistatic radar," The 11th International Conference on Information Sciences, Signal Processing and Their Applications: Main Tracks (ISSPA2012-Track), 1040-1044, 2012.

3. Gong, Q. and Z.-D. Zhu, "Study STAP algorithm on interference target detect under non-homogenous environment," Progress In Electromagnetics Research, Vol. 99, 211-224, 2009.
doi:10.2528/PIER09101502

4. Sarkar, T. K. and R. Adve, "Space-time adaptive processing using circular arrays," Antennas and Propagation Magazine, Vol. 43, No. 1, 138-143, 2001.
doi:10.1109/74.920027

5. Zatman, M., "Circular array STAP," IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 2, 510-517, 2000.
doi:10.1109/7.845235

6. Belfiori, F., S. Monni, W. Van Rossum, and P. Hoogeboom, "Side-lobe suppression techniques for a uniform circular array," European Radar Conference (EuRAD), 113-116, 2010.

7. Nguyen, H. N., J. D. Hiemstra, and J. S. Goldstein, "The reduced rank multistage Wiener filter for circular array STAP," Proceedings of the IEEE Radar Conference, 66-70, 2003.

8. Neyt, X., J. Raout, M. Kubica, V. Kubica, S. Roques, M. Acheroy, and J. G. Verly, "Feasibility of STAP for passive GSM-based radar," IEEE Conference on Radar, 546-551, 2006.

9. Kubica, M., V. Kubica, X. Neyt, J. Raout, S. Roques, and M. Acheroy, "Optimum target detection using illuminator of opportunity," IEEE Conference on Radar, 417-424, 2006.

10. Melvin, W. L., "A STAP overview," Aerospace and Electronic Systems Magazine, Vol. 19, No. 1, 19-35, 2004.
doi:10.1109/MAES.2004.1263229

11. Sarkar, T. K., H. Wang, S. Park, R. Adve, J. Koh, K. Kim, Y. Zhang, M. C. Wicks, and R. D. Brown, "A deterministic least-squares approach to space-time adaptive processing (STAP)," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 1, 91-103, 2001.
doi:10.1109/8.910535

12. Homer, J., K. Kubik, B. Mojarrabi, I. D. Longstaff, E. Donskoi, and M. Cherniakov, "Passive bi-static radar sensing with LEOS based transmitters," IEEE International Geo-science and Remote Sensing Symposium, (IGARSS), Vol. 1, 438-440, 2002.
doi:10.1109/IGARSS.2002.1025065

13. Chetty, K., K. Woodbridge, G. Hui, and G. E. Smith, "Passive bi-static WiMAX radar for marine surveillance," IEEE Radar Conference, 188-193, 2010.

14. Colone, F., P. Falcone, C. Bongioanni, and P. Lombardo, "WiFi-based passive bi-static radar: Data processing schemes and experimental results," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 2, 1061-1079, 2012.
doi:10.1109/TAES.2012.6178049

15. Howland, P. E., D. Maksimiuk, and G. Reitsma, "FM radio based bi-static radar," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 152, No. 3, 107-115, 2005.
doi:10.1049/ip-rsn:20045077

16. Tan, D. K. P., H. Sun, Y. Lu, M. Lesturgie, and H. L. Chan, "Passive radar using global system for mobile communication signal: Theory, implementation and measurements," IEE Proceedings | Radar, Sonar and Navigation, Vol. 152, No. 3, 116-123, 2005.
doi:10.1109/JSTSP.2009.2038977

17. Berger, C. R., B. Demissie, J. Heckenbach, P. Willett, and S. Zhou, "Signal processing for passive radar using OFDM waveforms," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 1, 226-238, 2010.

18. Cai , M., F. He, and L. Wu, "Application of UKF algorithm for target tracking in DTV-based passive radar," 2nd International Congress on Image and Signal Processing, (CISP), 1-4, 2009.

19. Jamil, K., M. Alam, M. Hadi, and Z. Alhekail, "A multi-band multi-beam software-defined passive radar Part I: System design," IET Radar Conference, 2012.

20. Alam, M., K. Jamil, Z. Alhekail, and S. Alhumaidi, "A multi-band multi-beam software-defined passive radar Part II: Signal processing," IET Radar Conference, 2012.
doi:10.1109/TSP.2009.2032993

21. De Maio, A., S. De Nicola, Y. Huang, D. P. Palomar, S. Zhang, and A. Farina, "Code design for radar STAP via optimization theory," IEEE Transactions on Signal Processing, Vol. 58, No. 2, 679-694, 2010.

22. Palmer, J. E. and S. J. Searle, "Evaluation of adaptive filter algorithms for clutter cancellation in passive bistatic radar," IEEE Radar Conference (RADAR), 493-498, 2012.

23. Searle, S., S. Howard, and J. Palmer, "Remodulation of DVBT signals for use in passive bistatic radar," Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 1112-1116, 2010.

24. Harms, H. A., L. M. Davis, and J. Palmer, "Understanding the signal structure in DVB-T signals for passive radar detection," IEEE Radar Conference, 532-537, 2010.

25. Yang, Z. C., Z. Liu, X. Li, and L. Nie, "Performance analysis of STAP algorithms based on fast sparse recovery techniques," Progress In Electromagnetics Research B, Vol. 41, 251-268, 2012.

26. Liu, Z., X. Wei, and X. Li, "Adaptive clutter suppression for airborne random pulse repetition interval radar based on compressed sensing," Progress In Electromagnetics Research, Vol. 128, 291-311, 2012.

27. Wu, D., Z. Xu, L. Zhang, Z. Xiong, and S. Xiao, "Performance analysis of polarization-space-time three-domain joint processing for clutter suppression in airborne radar," Progress In Electromagnetics Research, Vol. 129, 579-601, 2012.

28. Richards, M. A., Fundamentals of Radar Signal Processing, Tata McGraw-Hill Education, 2005.