Vol. 30
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-04-09
An Exact Formulation for the Reflection Coefficient from Anisotropic Multilayer Structures with Arbitrary Backing
By
Progress In Electromagnetics Research M, Vol. 30, 79-93, 2013
Abstract
This paper is concerned with the theory of wave propagation in biaxial anisotropic media. Consider a multilayered planar structure composed of media with electric and magnetic anisotropy, surrounded by two half spaces. Exat relations for reflection coefficient from this structure can be useful for arriving at the intended applications. In this paper, by matching of transverse field components at the bounderies, we will arrive at exact recursive relations for reflection coefficient of the structure. In the previous works, the magnetic and electric anisotropy were not taken into consideration at the same time, or complex relations were arrived. But using this novel method, those complexities will not appear and both electric and magnetic anisotropy are take into consideration. Moreover, we will not set any limits on the right half-space so the right most half-space may be a PEC, PMC, PEMC, surface impedance, dielectric or a metamaterial. Finally, the last section of the paper confirms the validity of the relations arrived at and as an interesting application; the zero reflection condition will be obtained.
Citation
Maryam Heidary, Ali Abdolali, and Mohammad Mahdi Salary, "An Exact Formulation for the Reflection Coefficient from Anisotropic Multilayer Structures with Arbitrary Backing," Progress In Electromagnetics Research M, Vol. 30, 79-93, 2013.
doi:10.2528/PIERM12101504
References

1. Qiao, S., G. Zheng, and L. Ran, "Enhancement of evanescent wave in an electrically anisotropic slab with partially negative permittivity tensor," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 10, 1341-1350, 2008.
doi:10.1163/156939308786348965        Google Scholar

2. Wang, M.-Y., J. Xu, J.Wu, B.Wei, H.-L. Li, T. Xu, and D.-B. Ge, "FDTD study on wave propagation in layered structures with biaxial anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 81, 253-265, 2008.
doi:10.2528/PIER07122602        Google Scholar

3. Bass, F. G. and L. Resnick, "The electromagnetic-wave propagation through a stratified inhomogeneous anisotropic medium," Progress In Electromagnetics Research, Vol. 48, 67-83, 2004.
doi:10.2528/PIER03122302        Google Scholar

4. Lindell, I. V., "Decomposition of electromagnetic fields in bi-anisotropic media," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 5, 645-657, 1997.
doi:10.1163/156939397X00882        Google Scholar

5. Kong, J. A., Theory of Electromagnetic Wave, Wiley, New York, 1986.

6. Ren, W., "Contributions to the electromagnetic wave theory of bounded homogeneous anisotropic media," Phys. Rev. E, Vol. 47, No. 1, 664-673, Jan. 1993.
doi:10.1103/PhysRevE.47.664        Google Scholar

7. Cohoon, D. K., "An exact solution of mie type for scattering by a multilayer anisotropic sphere," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 5, 421-448, 1989.
doi:10.1163/156939389X00142        Google Scholar

8. Teitler, S. and B. W. Henvis, "Refraction in stratified anisotropic media," J. Opt. Soc. Am., Vol. 60, 830-834, Jun. 1970.
doi:10.1364/JOSA.60.000830        Google Scholar

9. Berreman, D. W., "Optic in stratified and anisotropic media: 4 x 4 matrix formulation ," J. Opt. Soc. Am., Vol. 62, 502-510, Apr. 1972.
doi:10.1364/JOSA.62.000502        Google Scholar

10. Barkovskii, L. M. and G. N. Borzdov, "Electromagnetic waves in absorbing plane-layered anisotropic and gyrotropic media," J. Appl. Spectrosc., Vol. 23, 985-991, Sep. 1976.        Google Scholar

11. Barkovskii, L. M. and G. N. Borzdov, "Reflection of electromagnetic waves from layerde continuously inhomogeneous anisotropic media: Multiple reflection method," Opt. Spectrosc. (USSR), Vol. 45, 701-705, Oct. 1978.        Google Scholar

12. Graglia, R. D. and P. L. E. Uslenghi, "Electromagnetic scattering from anisotropic materials, part I: General theory," IEEE Transactions on Antennas and Propagation, Vol. 32, 867-869, Aug. 1984.
doi:10.1109/TAP.1984.1143422        Google Scholar

13. Morgan, M. A., et al. "Electromagnetic scattering by stratified inhomogeneous anisotropic media," IEEE Transactions on Antennas and Propagation, Vol. 35, 191-198, Feb. 1987.
doi:10.1109/TAP.1987.1144069        Google Scholar

14. Graglia, R. D., et al. "Reflection and transmission for planar structures of bianisotropic media," Electromagnetics, Vol. 11, No. 2, 193-208, 1991.
doi:10.1080/02726349108908273        Google Scholar

15. Titchener, J. B. and J. R. Willis, "The reflection of electromagnetic waves form stratified anisotropic media," IEEE Transactions on Antennas and Propagation, Vol. 39, 35-40, Jan. 1991.
doi:10.1109/8.64432        Google Scholar

16. Tsalamengas, J. L., "Interaction of electromagnetic waves with general bianisotropic slabs," IEEE Trans. Microwave Therory Tech., Vol. 40, 1870-1879, Oct. 1992.        Google Scholar

17. Lindell, I. V., et al. "Vector transmission-line and circuit theory for bi-isotropic layered structures," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 1, 147-173, 1993.
doi:10.1163/156939393X01119        Google Scholar

18. Yang, H. D., "A spectral recursive transformation method for electromagnetic waves in generalized anisotropic layered media," IEEE Transactions on Antennas and Propagation, Vol. 45, 520-527, Mar. 1997.
doi:10.1109/8.558667        Google Scholar

19. Ning, J. and E. L. Tan, "Hybrid matrix method for stable analysis of electromagnetic waves in stratified bianisotropic media," IEEE Microwave Wireless Comp. Lett., Vol. 18, 653-656, Oct. 2008.
doi:10.1109/LMWC.2008.2003446        Google Scholar

20. Orfanidis, S. J., "Electromagnetic waves and antennas,", Department of Electrical and Computer Engineering, Rutgers University, Jun. 2004.        Google Scholar