Vol. 28
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-01-19
Adaptive Detection in Compound-Gaussian Clutter with Inverse Gaussian Texture
By
Progress In Electromagnetics Research M, Vol. 28, 157-167, 2013
Abstract
This paper mainly deals with the detection problem of the target in the presence of the Compound-Gaussian (CG) distribution clutter with the unknown Power Spectral Density (PSD). Traditionally, the CG distributions, in particular the K distribution and the complex multivariate t distribution, are the widely used models for the clutter measurements from the High Resolution (HR) radars. Recently, the CG distribution with the Inverse Gaussian (IG) texture, the specific class of CG clutter, is represented as the IG-CG distribution and validated to provide the better fit with the recorded clutter data than the mentioned two competitors. Within the IG-CG framework, the detector is here proposed in terms of the two-step Generalized Likelihood Ratio Test (GLRT) criterion, and the empirical estimation method is resorted to estimate the unknown PSD in order to adapt the realistic scenario. The proposed detector is tested on the real-life IPIX radar data, in comparison with the existing Adaptive Normalized Matched Filter (ANMF) processor, and the detection results illustrate that it outperforms ANMF.
Citation
Sijia Chen Lingjiang Kong Jianyu Yang , "Adaptive Detection in Compound-Gaussian Clutter with Inverse Gaussian Texture," Progress In Electromagnetics Research M, Vol. 28, 157-167, 2013.
doi:10.2528/PIERM12121209
http://www.jpier.org/PIERM/pier.php?paper=12121209
References

1. Carretero-Moya, J., J. Gismero-Menoyo, A. Asensio-Lopez, and A. Blanco-del-Campo, "Application of the radon transform to detect small-targets in sea clutter," ET Radar Sonar Navig., Vol. 3, No. 2, 155-166, 2009.
doi:10.1049/iet-rsn:20080123

2. Kelly, E. J., "An adaptive detection algorithm," IEEE Trans. Aerosp. Electron. Syst., Vol. 22, No. 1, 115-127, 1986.
doi:10.1109/TAES.1986.310745

3. Qu, Y., G. S. Liao, S. Q. Zhu, and X. Y. Liu, "Pattern synthesis of planar antenna array via convex optimization for airborne forward looking radar," Progress In Electromagnetics Research, Vol. 84, 1-10, 2008.
doi:10.2528/PIER08060301

4. Qu, Y., G. S. Liao, S. Q. Zhu, X. Y. Liu, and H. Jiang, "Performance analysis of beamforming for MIMO radar," Progress In Electromagnetics Research, Vol. 84, 123-134, 2008.
doi:10.2528/PIER08062306

5. Hatam, M., A. Sheikhi, and M. A. Masnadi-Shirazi, "Target detection in pulse-train MIMO radars applying ICA algorithms," Progress In Electromagnetics Research, Vol. 122, 413-435, 2012.
doi:10.2528/PIER11101206

6. Carretero-Moya, J., J. Gismero-Menoyo, A. Blanco-del-Campo, and A. Asensio-Lopez, "Statistical analysis of a high-resolution sea-clutter database," IEEE Trans. Geosci. Remote, Vol. 48, No. 4, 2024-2037, 2010.
doi:10.1109/TGRS.2009.2033193

7. Watts, S., C. J. Baker, and K. D. Ward, "Maritime surveillance radar. II. Detection performance prediction in sea clutter," IEE Proc.-F, Radar Signal Process, Vol. 137, No. 2, 63-72, 1990.
doi:10.1049/ip-f-2.1990.0010

8. Conte, E., Lops, M., and G.Ricci, "Adaptive detection schemes in compound-Gaussian clutter," IEEE Trans. Aerosp. Electron. Syst., Vol. 34, No. 4, 1058-1069, 1998.
doi:10.1109/7.722671

9. Sangston, K. J. and K. R. Gerlach, "Coherent detection of radar targets in a non-Gaussian background," IEEE Trans. Aerosp. Electron. Syst., Vol. 30, No. 2, 330-340, 1994.
doi:10.1109/7.272258

10. Ward, K. D., R. J. A. Tough, and S. Watts, "Sea clutter: Scatter-ing, the K-distribution and radar performance," IET Radar Sonar Navig. Ser., Vol. 20, 45-95, 2006.

11. Haykin, S., R. Bakker, and B. W. Currie, "Uncovering nonlinear dynamics --- The case study of sea clutter," Proc. IEEE, Vol. 90, No. 2, 860-881, 2002.
doi:10.1109/JPROC.2002.1015011

13. Greco, M., F. Gini, and M. Rangaswamy, "Non-stationarity analysis of real X-band clutter data at different resolutions," IEEE Radar Conf., 44-50, 2006.

14. Ward, K. D., C. J. Baker, and S. Watts, "Maritime surveillance radar. I. Radar scattering from the ocean surface," IEE Proc. Radar Signal Process., Vol. 137, No. 2, 51-62, 1990.
doi:10.1049/ip-f-2.1990.0009

15. Nohara, T. J. and S. Haykin, "Canadian East Coast radar trials and the K-distribution," IEE Proc. Radar Signal Process., Vol. 138, No. 2, 80-88, 1991.
doi:10.1049/ip-f-2.1991.0013

16. Bandiera, F., O. Besson, and G. Ricci, "Knowledge-aided covariance matrix estimation and adaptive detection in compound-Gaussian noise," IEEE Trans. Signal Process., Vol. 58, No. 10, 5391-5396, 2010.
doi:10.1109/TSP.2010.2052922

17. Blacknell, D. and R. J. A. Tough, "Parameter estimation for the K-distribution based on [z log(z)]," IEE Proc. Radar Sonar Navig., Vol. 148, No. 6, 309-312, 2001.
doi:10.1049/ip-rsn:20010720

18. Conte, E., A. De Maio, and C. Galdi, "Statistical analysis of real clutter at different range resolution," IEEE Trans. Aerosp. Electron. Syst., Vol. 40, 903-918, 2004.
doi:10.1109/TAES.2004.1337463

19. Conte, E. and A. De Maio, "Mitigation techniques for non-Gaussian sea clutter," IEEE J. Oceanic Eng., Vol. 29, No. 2, 284-302, 2004.
doi:10.1109/JOE.2004.826901

20. Balleri, , A., , A. Nehorai, and J. Wang, "Maximum likelihood estimation for compound-Gaussian clutter with inverse gamma texture," IEEE Trans. Aerosp. Electron. Syst., Vol. 43, No. 2, 775-779, 2007.
doi:10.1109/TAES.2007.4285370

21. Sangston, K. J., F. Gini, and M. S. Greco, "New results on coherent radar target detection in heavy-tailed compound-Gaussian clutter," IEEE Radar Conf., 779-784, 2010.

22. Shang, X. and H. Song, "Radar detection based on compound-Gaussian model with inverse gamma texture," IET Radar Sonar Navig., Vol. 5, No. 3, 315-321, 2011.
doi:10.1049/iet-rsn.2010.0125

23. Ollila, E. , D. E. Tyler, V. Koivunen, and H. V. Poor, "Compound-Gaussian clutter modeling with an inverse Gaussian texture distribution," IEEE Signal Process. Lett., Vol. 19, No. 12, 876-879, 2012.
doi:10.1109/LSP.2012.2221698

24. Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Wiley-Interscience, New York, 1994.

25. Carretero-Moya, J., J. Gismero-Menoyo, A. Asensio-Lopez, and A. Blanco-Del-Campo, "Small-target detection in high-resolution heterogeneous sea-clutter: an empirical analysis," IEEE Trans. Aerosp. Electron. Syst., Vol. 47, No. 3, 1880-1898, 2011.
doi:10.1109/TAES.2011.5937271

26. Pulsone, N. B. and R. S. Raghavan, "Analysis of an adaptive CFAR detector in non-Gaussian interference," IEEE Trans. Aerosp. Electron. Syst., Vol. 35, No. 3, 903-916, 1999.
doi:10.1109/7.784060