Vol. 38
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-04-02
Fast Detection of GPR Objects with Cross Correlation and Hough Transform
By
Progress In Electromagnetics Research C, Vol. 38, 229-239, 2013
Abstract
A GPR object detection algorithm delivers a promising performance using the Hough transform through a high computational load. This paper presents a fast Hough-based algorithm. To reduce the parameter space of the Hough transform, first, two parameters for a reflection hyperbola were estimated using cross correlation between adjacent A-scans. Next, only a 1D Hough transform is necessary to detect an object compared with the 3D transform, which comprises the traditional Hough-based methods. Our method is compared with three other detection methods using field data. The results show that the proposed method has an encouraging detection ability and high computational efficiency.
Citation
Jian Wang Yi Su , "Fast Detection of GPR Objects with Cross Correlation and Hough Transform," Progress In Electromagnetics Research C, Vol. 38, 229-239, 2013.
doi:10.2528/PIERC13022510
http://www.jpier.org/PIERC/pier.php?paper=13022510
References

1. Jol, H. M., Ground Penetrating Radar Theory and Applications, Elsevier Science, Amsterdam, 2009.

2. Carlotto, M. J., "Detecting buried mines in ground penetrating radar using a hough transform approach," Battlespace Digitization and Network-Centric Warfare II, 251-261, Orlando, 2002.
doi:10.1117/12.478719

3. Chen, D., C. Huang, and Y. Su, "An integrated method of statistical method and hough transform for GPR target S detection and location," Acta Electronic Sinica, Vol. 32, No. 9, 1468-1471, 2004.

4. Simi, A., S. Bracciali, and G. Manacorda, "Hough transform based automatic pipe detection for array GPR: Algorithm development and on-site tests," IEEE Radar Conference, 1-6, Rome, 2008.

5. Birkenfeld, S., "Automatic detection of reflexion hyperbolas in GPR data with neural networks," World Automation Congress, 1-6, Kobe, 2010.

6. Liu, Y., M. Wang, and Q. Cai, "The target detection for GPR images based on curve fitting," 3rd International Congress on Image and Signal Processing, 2876-2879, Yantai, 2010.

7. Guil, N., J. Villalba, and E. L. Zapata, "A fast hough transform for segment detection," IEEE Trans. on Image Process., Vol. 4, No. 11, 1541-1548, 1995.
doi:10.1109/83.469935

8. Kiryati, N., Y. Eldar, and A. M. Bruckstein, "A probabilistic hough transform," Pattern Recognition, Vol. 24, No. 4, 303-316, 1991.
doi:10.1016/0031-3203(91)90073-E

9. Long, K., P. Liatsis, and N. Davidson, "Image processing of ground penetrating radar data for landmine detection," Proc. of SPIE, Vol. 6217, 62172R1-62172R12, 2006.

10. Hayashi, N. and M. Sato, "F-K filter designs to suppress direct waves for bistatic ground penetrating radar," IEEE Trans. on Geosci. Remote Sensing, Vol. 48, No. 3, 1433-1444, 2010.
doi:10.1109/TGRS.2009.2032536

11. Gader, P. D., M. Mystkowski, and Y. Zhao, "Landmine detection with ground penetrating radar using hidden Markov models," IEEE Trans. on Geosci. Remote Sensing, Vol. 39, 1231-1244, 2001.
doi:10.1109/36.927446

12. Wilson, J. N., P. Gader, W.-H. Lee, H. Frigui, and K. C. Ho, "A large-scale systematic evaluation of algorithms using ground-penetrating radar for landmine detection and discrimination," IEEE Trans. on Geosci. Remote Sensing, Vol. 45, No. 8, 2560-2572, 2007.
doi:10.1109/TGRS.2007.900993

13. Zhu, Q. and L. M. Collins, "Application of feature extraction methods for landmine detection using the Wichmann/Niitek ground-penetrating radar," IEEE Trans. on Geosci. Remote Sensing, Vol. 43, No. 1, 81-85, 2005.
doi:10.1109/TGRS.2004.839431