Vol. 32
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-07-31
Time-Reversal Focus-Gain Flatness of Polarization-Varying Electromagnetic Fields in Rectangular Resonant Cavity
By
Progress In Electromagnetics Research M, Vol. 32, 145-155, 2013
Abstract
In this work, theoretical analysis and numerical results are given for time-reversal (TR) focus gains of polarization-varying electromagnetic fields in a rectangular resonant cavity. To demonstrate the gains in different polarization states of the static transceivers and the ones of the rotatable transceivers, the 3 dB attenuation areas of TR angle gain (AG) and AG flatness are first calculated. The flat area is about equivalent to the range of two centrosymmetric octants in a three-dimensional Cartesian coordinate. Phase-frequency waterfalls verify the polarization-rotational rheology of the TR focus gain, in which uniform and smooth areas will contribute higher gain than uneven and rough areas.
Citation
Ying-Ming Chen Bing-Zhong Wang Hong-Cheng Zhou , "Time-Reversal Focus-Gain Flatness of Polarization-Varying Electromagnetic Fields in Rectangular Resonant Cavity," Progress In Electromagnetics Research M, Vol. 32, 145-155, 2013.
doi:10.2528/PIERM13052708
http://www.jpier.org/PIERM/pier.php?paper=13052708
References

1. Dmitriev, V., "Space-time reversal symmetry properties of electromagnetic Green's tensors for complex and bianisotropic media," Progress In Electromagnetics Research, Vol. 48, 145-184, 2004.
doi:10.2528/PIER04020501

2. Lerosey, G., J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, "Time reversal of electromagnetic waves," Phys. Rev. Lett., Vol. 92, No. 19, 193904, May 2004.
doi:10.1103/PhysRevLett.92.193904

3. Lerosey, G., J. de Rosny, A. Tourin, and M. Fink, "Focusing beyond the diffraction limit with far-Field time reversal," Science, Vol. 315, 1120-1122, Feb. 2007.
doi:10.1126/science.1134824

4. Ge, G.-D., D. Wang, and B.-Z. Wang, "Subwavelength array of planar triangle monopoles with cross slots based on far-field time reversal," Progress In Electromagnetics Research, Vol. 114, 429-441, 2011.

5. Davy, M., J.-G. Minonzio, J. de Rosny, C. Prada, and M. Fink, "Influence of noise on subwavelength imaging of two close scatterers using time reversal method: Theory and experiments," Progress In Electromagnetics Research, Vol. 98, 333-358, 2009.
doi:10.2528/PIER09071004

6. Naqvi, I. H., S. A. Aleem, O. Usman, S. B. Ali, P. Besnier, and G. El. Zein, "Robustness of a time-reversal ultra-wideband system in non-stationary channel environments," Wireless Communications and Networking Conference: PHY and Fundamentals, 37-41, 2012.

7. Zhu, , X., Z. Zhao, W. Yang, Y. Zhang, Z.-P. Nie, and Q. H. Liu, "Iterative time-reversal mirror method for imaging the buried object beneath rough ground surface," Progress In Electromagnetics Research, Vol. 117, 19-33, 2011.

8. Solimene, R., A. Dell'Aversano, and G. Leone, "Interferometric time reversal music for small scatterer localization," Progress In Electromagnetics Research, Vol. 131, 243-258, 2012.

9. Qiu, R. C., C. Zhou, N. Guo, and J. Q. Zhang, "Time reversal with MISO for ultra-wideband communications: Experimental results," results," IEEE Antenna and Wireless Propagation Letters, Vol. 5, No. 1, 269-273, 2006.
doi:10.1109/LAWP.2006.875888

10. Guo, N., B. M. Sadler, and R. C. Qiu, "Reduced-complexity UWB time-reversal techniques and experimental results," IEEE Trans. Wireless Comm., Vol. 6, No. 12, 4221-4226, Dec. 2007.
doi:10.1109/TWC.2007.060251

11. Zhou, C., N. Guo, and R. C. Qiu, "Time reversed ultra-wideband (UWB) multiple-input multiple-output (MIMO) based on measured spatial channels," IEEE Trans. Vehicular Technology, Vol. 58, No. 6, 2884-2898, Jul. 2009.
doi:10.1109/TVT.2008.2012109

12. Zhao, D. S., Y. W. Jin, B.-Z. Wang, and R. Zang, "Time reversal based broadband synthesis method for arbitrarily structured beam-steering arrays," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 164-173, Jan. 2012.
doi:10.1109/TAP.2011.2167904

13. Zhai, H., S. Jung, and M. Lu, "Wireless communication in boxes with metallic enclosure based on time-reversal ultra-wideband technique: A full-wave numerical study," Progress In Electromagnetics Research, Vol. 101, 63-74, 2010.
doi:10.2528/PIER09112502

14. Li, D., J. S. Hong, and B.-Z. Wang, "Improving anti-detection/interception performance for wireless sensor network based on time-reversal technology," The 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom), 1-4, 2009.

15. Sundaralingam, P., V. Fusco, D. Zelenchuk, and R. Appleby, "Detection of an object in a reverberant environment using direct and differential time reversal," The 6th European Conference on Antennas and Propagation (EUCAP), 1115-1117, 2011.

16. Moura, J. M. F. and Y. W. Jin, "Detection by time reversal: Single antenna," IEEE Trans. Signal Process., Vol. 55, No. 1, 187-201, Jan. 2007.
doi:10.1109/TSP.2006.882114

17. Le Fur, G., P. Besnier, and A. Sharaiha, "Efficiency measurement of UWB antennas using time reversal in reverberation chambers," Electronics Letters, Vol. 44, No. 17, 1002-1003, Aug. 14, 2008.
doi:10.1049/el:20081183