1. Holland, R. and R. S. John, "Statistical Electromagnetics," Taylor & Francis, 1999. Google Scholar
2. Manfredi, P. and F. G. Canavero, "Impact of dielectric variability on modal signaling over cable bundles," Proc. ESA Workshop on Aerospace EMC, 1-4, May 2012. Google Scholar
3. De Menezes, L., D. Thomas, and C. Christopoulos, "Accounting for uncertainty in EMC studies," Proc. EMC09, 753-756, 2009. Google Scholar
4. Lallechere, S., S. Girard, P. Bonnet, and F. Paladian, "Enforcing experimentally stochastic techniques in uncertain electromagnetic environments," Proc. ESA Workshop on Aerospace EMC, 1-6, May 2012. Google Scholar
5. Taflove, A. and S. C. Hagness, "Computational Electromagnetics: The Finite-diFFerence Time Domain Method," Artech House, 2005. Google Scholar
6. Hughes, T. J. R., The Finite Element Method, Linear Static and Dynamic Finite Element Analysis, 2000.
7. Harrington, R. F., Field Computation by Moment Methods, IEEE Press Series on Electromagnetic Wave Theory , 1993.
doi:10.1109/9780470544631
8. Xiu, D. and G. E. Karniadakis, "The Wiener-Askey polynomial chaos for stochastic differential equations," SIAM J. Sci. Comput., Vol. 24, No. 2, 619-644, 2002.
doi:10.1137/S1064827501387826 Google Scholar
9. Soize, C. and R. Ghanem, "Physical systems with random uncertainties: Chaos representations with arbitrary probability measure," SIAM J. Sci. Comput., Vol. 26, No. 2, 395-410, 2005.
doi:10.1137/S1064827503424505 Google Scholar
10. Stievano, I. S., P. Manfredi, and F. G. Canavero, "Parameter variability effects on multiconductor interconnects via hermite polynomial chaos," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 1, No. 8, 1234-1239, Aug. 2011.
doi:10.1109/TCPMT.2011.2152403 Google Scholar
11. Eldred, M., C. Webster, and P. Constantine, "Evaluation of non-intrusive approaches for Wiener-Askey generalized polynomial chaos," 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Apr. 2008. Google Scholar
12. Papoulis, A. and S. U. Pillai, Probability, Random Variable and Stochastic Processes, 4th Ed., 664-673, McGraw Hill, 2002.
13. Konrad, K., "Probability distributions and maximum entropy,".
doi:www.math.uconn.edu/~kconrad/blurbs/analysis/entropypost.pdf. Google Scholar
14. Pathria, R. K., Statistical Mechanics, 2nd Ed., 1999.
15. Shannon, C. E., "A mathematical theory of communication," The Bell System Technical Journal, Vol. 27, 379-423, Jul. 1948.
doi:10.1002/j.1538-7305.1948.tb01338.x Google Scholar
16. Balanis, C. A., Advanced Engineering Electromagnetics, 718-720, John Wiley & Sons, 1989.
17. Miano, G., L. Verolino, and V. G. Vaccaro, "A new numerical treatment for Pocklington's integral equation ," IEEE Tran. on Mag., Vol. 32, No. 3, 918-921, May 1996.
doi:10.1109/20.497391 Google Scholar
18. Anders, R., "Minimum continuity requirements for basis functions used with the Pocklington integral equation," Antennas and Propagation Society International Symposium, Vol. 15, 284-287, Jun. 1977. Google Scholar
19. Nazareth, J. L., "Linear and nonlinear conjugate-gradient related methods," Proc. App. Math., Vol. 85, Jan. 1996. Google Scholar