Vol. 42
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-07-15
Application of Bionics in Frequency Selective Surface Design and Antenna Radar Cross Section Reduction
By
Progress In Electromagnetics Research C, Vol. 42, 29-38, 2013
Abstract
Bionics principle is applied to frequency selective surface (FSS) design in this paper. To authenticate the method, a novel bionic and miniaturized FSS is proposed by use of a model of alternate phyllotaxis. The simulated and measured results show that the proposed FSS has a much smaller size and maintains other FSS-related performances. To study the applications of the novel bionic FSS in practice, it is used for the ground plane of an antenna array to reduce the antenna radar cross section (RCS). Compared to a reference antenna, the antenna with bionic FSS has lower RCS and favorable radiation performance. Hence, applying bionics principle to FSS design and antenna RCS reduction is proved feasible, which will serve as a good candidate for the future design of FSS and antennas with or without a requirement of RCS control.
Citation
Wen Jiang, Tao Hong, and Shu-Xi Gong, "Application of Bionics in Frequency Selective Surface Design and Antenna Radar Cross Section Reduction," Progress In Electromagnetics Research C, Vol. 42, 29-38, 2013.
doi:10.2528/PIERC13061007
References

1. Jiang, W., Y. Liu, S. X. Gong, and T. Hong, "Application of bionics in antenna radar cross section reduction," IEEE Antennas Wireless Propagation Letters, Vol. 8, 1275-1278, 2009.

2. Liu, Y. and S. X. Gong, "A novel UWB clover-DISC monopole antenna with RCS reduction," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1115-1121, 2008.

3. Li, W. Q., X. Y. Cao, J. Gao, and X. Yao, "Bionic antenna with low RCS for microstrip application," Modern Radar, Vol. 33, 63-66, 2011.

4. Martynyuk, E. and J. I. M. Lopez, "Frequency-selective surfaces based on shorted ring slots," Electronics Letters, Vol. 37, No. 5, 268-269, 2001.

5. Nguyen, T. K., T. A. Ho, I. Park, and H. Han, "Full-wavelength dipole antenna on a GaAs membrane covered by a frequency selective surface for a Terahertz photomixer," Progress In Electromagnetics Research, Vol. 131, 441-455, 2012.

6. Kotnala, A., P. Juyal, A. Mittal, and A. De, "Investigation of cavity re°ex antenna using circular patch type FSS superstrate," Progress In Electromagnetics Research B, Vol. 42, 141-161, 2012.

7. Ramaccia, D., A. Toscano, A. Colasante, G. Bellaveglia, and R. Lo Forti, "Inductive tri-band double element FSS for space applications," Progress In Electromagnetics Research C, Vol. 18, 87-101, 2011.

8. Kim, J.-Y., J. H. Choi, and C. W. Jung, "Band-notched planar UWB antenna using unit cells of frequency selective surfaces," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 17-18, 2291-2303, 2012.

9. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, 1239-1245, 2007.

10. Li, H., B.-Z. Wang, G. Zheng, W. Shao, and L. Guo, "A reflectarray antenna backed on FSS for low RCS and high radiation performances," Progress In Electromagnetics Research C, Vol. 15, 145-155, 2010.

11. Hu, S., H. Chen, C. L. Law, Z. Shen L. Zhu, W. Zhang, and W. Dou, "Backscattering cross section of ultrawideband antennas," IEEE Antennas Wireless Propagation Letters, Vol. 6, 70-73, 2007.

12. Ren, L.-S., Y.-C. Jiao, J.-J. Zhao, and F. Li, "RCS reduction for a FSS-backed reflectarray using a ring element," Progress In Electromagnetics Research Letters, Vol. 26, 115-123, 2011.

13. Jia, Y., Y. Liu, S.-X. Gong, T. Hong, and D. Yu, "Printed UWB end-fire vivaldi antenna with low RCS," Progress In Electromagnetics Research Letters, Vol. 37, 11-20, 2013.

14. Costa, F., S. Genovesi, and A. Monorchio, "A frequency selective absorbing ground plane for low-RCS microstrip antenna arrays," Progress In Electromagnetics Research, Vol. 126, 317-332, 2012.

15. Shang, Y. P., S. Q. Xiao, J. L. Li, and B.-Z. Wang, "An electronically controllable method for radar cross section reduction for a microstrip antenna," Progress In Electromagnetics Research, Vol. 127, 15-30, 2012.

16. Hong, T., S.-X. Gong, W. Jiang, Y.-X. Xu, and X. Wang, "A novel ultra-wide band antenna with reduced radar cross section," Progress In Electromagnetics Research, Vol. 96, 299-308, 2009.

17. Genovesi, S., F. Costa, and A. Monorchio, "Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2327-2335, 2012.

18. Yuan, H. W., S. X. Gong, X. Wang, and W. T. Wang, "Wideband printed dipole antenna using a novel PBG structure," Microwave and Optical Technology Letters, Vol. 51, No. 8, 1862-1865, 2009.