Vol. 42
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-08-02
Wideband DGS Circular Ring Microstrip Antenna Design Using Fuzzy Approach with Suppressed Cross-Polar Radiations
By
Progress In Electromagnetics Research C, Vol. 42, 177-190, 2013
Abstract
This paper presents a novel design of a circular ring defected ground structure (DGS) antenna for bandwidth enhancement using fuzzy logic approach. The ground plane of the antenna is defected by introducing circular ring sector type of defect beneath the circular ring patch. The position of the defect in the ground plane to attain the highest return loss and corresponding frequency is determined by using Fuzzy Interface System (FIS). The antenna resonates in X-band showing wideband characteristics with improved gain and reduced cross polar radiations. The return loss and analogous frequency obtained from simulated results and fuzzy system are compared and are in good agreement. The return loss and input impedance is measured experimentally and compared with the simulated results. Parameters like impedance bandwidth, VSWR and antenna gain are likewise calculated and discussed. The simulated results for the radiation pattern of the proposed design with polarization (Co-polar and Cross-polar) are also presented. The simulated impedance bandwidth of about 1.33 GHz (1.2 GHz experimentally) in X-band is obtained with a gain of 6.43 dB and also cross-polarized radiations have an isolation of 20 dB.
Citation
Rakesh Sharma, Abhishek Kandwal, and Sunil Kumar Khah, "Wideband DGS Circular Ring Microstrip Antenna Design Using Fuzzy Approach with Suppressed Cross-Polar Radiations," Progress In Electromagnetics Research C, Vol. 42, 177-190, 2013.
doi:10.2528/PIERC13061504
References

1. He, W., R. Jin, and J. Geng, "E-shape patch with wideband and circular polarization for millimeterwave communication," IEEE Trans. on Antennas and Propagation, Vol. 50, No. 3, 893-895, 2008.

2. Bahl, J. and P. Bhartia, Microstrip Antennas, Artech House, Dedham, MA, 1980.

3. Gupta, K. C. and A. Benalla Editors, Microstrip Antenna Design, Artech House, Canton, MA, 1988.

4. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas, IEE Electromagnetic Wave Series No. 28, Vols. 1, 2, Peter Peregrinus Ltd., London, 1989.

5. Bhartia, P., K. V. S. Rao, and R. S. Tomar Editors, Millimeter-wave Microstrip and Printed Circuit Antennas, Artech House, Canton, MA, 1991.

6. Pozar, D. M. and D. H. Schaubert eds., Microstrip Antennas: The Analysis and Designof Microstrip Antennas and Arrays, IEEE Press, New York, 1995.

7. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, New York, 2001.

8. Maci, S. and G. BiffiGentilli, "Dual-frequency patch antennas," IEEE Trans. on Antennas and Propagation Mag., Vol. 39, No. 6, 13-20, 1997.

9. Zulkifli, F. Y., E. T. Rahardjo, and D. Hartanto, "Radiation properties enhancement of triangular patch microstrip antenna array using hexagonal defected ground structure," Progress In Electromagnetics Research M, Vol. 5, 101-109, 2008.

10. Sharma, R., A. Kandwal, and S. K. Khah, "A novel multiband DGS antenna with enhanced bandwidth for wireless communication," Mobile & Embedded Technology International Conference 2013, 89-92, 2013.

11. Lim, J. S., S. Y. C. Jeong, D. Ahn, and S. Nam, "A technique reducing the size of microwave amplifiers using spiral-shaped defected ground structure," J. Korea Electromag. Eng., Vol. 14, No. 9, 904-911, Sep. 2003.

12. Kim, C. S., J. S. Park, and D. Ahn, "A novel 1-D periodic defected ground structure for planar circuits," IEEE Microwave Guided Wave Lett., Vol. 10, No. 4, 131-133, Apr. 2000.

13. Lim, P. L. and K. M. Lum, "A novel bandpass filter design using E-shaped resonator and dual square-loop defected ground structure," PIERS Proceedings, 610-614, Kuala Lumpur, Malaysia, Mar. 27-30, 2012.

14. Zulkifli, F. Y., E. T. Rahardjo, and D. Hartanto, "Mutual coupling reduction using dumbbell defected ground structure for multiband microstrip antenna array," Progress In Electromagnetics Research Letters, Vol. 13, 29-40, 2010.

15. Zainud-Deen, S. H., M. E. S. Badr, E. Hassan, K. H. Awadalla, and H. A. Sharshar, "Microstrip antenna with defected ground plane structure as sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 4, 27-39, 2008.

16. Lim, J. S., K. S. Kim, Y. T. Lee, D. Ahn, and S. Nam, "A spiral shaped defect ground structure for coplanar waveguide," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 9, 330-332, 2009.

17. Weng, L. H., Y.-C. Guo, X.-W. Shi, and X.-Q. Chen, "An overview on defected ground structure," Progress In Electromagnetics Research B, Vol. 7, 173-189, 2008.

18. Hosseini, S. A., Z. Atlasbaf, and K. Forooraghi, "Two new loaded compact planar ultra-wideband antennas using defected ground structures," Progress In Electromagnetics Research B, Vol. 2, 165-176, 2008.

19. Li, L.-X., S.-S. Zhong, and M.-H. Chen, "Compact band-notched ultra-wideband antenna using defected ground structure," Microwave and Optical Technology Letters, Vol. 52, No. 2, 286-289, , 2011.

20. Saad, A. A. R., E. E. M. Khaled, and D. A. Salem, "Wideband slotted planar antenna with defected ground structure," PIERS Proceedings, 1092-1097, Suzhou, China, Sep. 12-16, 2011.

21. Guha, D., M. Biswas, and Y. M. M. Antar, "Microstrip patch antenna with defected ground structure for cross polarization suppression," IEEE Antennas Wireless Propag. Lett., Vol. 4, 455-458, 2008.

22. Kumar, C. and D. Guha, "New defected ground structures (DGSs) to reduce cross-polarized radiation of circular microstrip antennas," IEEE Applied Electromagnetic Conf. AEMC 2009, 1-4, Kolkata, India, 2009, DOI: 10.1109/AEMC.2009.5430671.

23. Guha, D., C. Kumar, and S. Pal, "Improved cross-polarization characteristics of circular microstrip antenna employing arc-shaped defected groundstructure (DGS)," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1367-1369, 2009.

24. Salehi, M. and A. Tavakoli, "A novel low mutual coupling A novel low mutual coupling," Int. J. Electron Commun., Vol. 60, 718-723, 2006.

25. Guha, D., S. Biswas, and C. Kumar, "Annular ring shaped dgs to reduce mutual coupling between two microstrip patches," IEEE Applied Electromagnetic Conf. AEMC 2009, 1-3, Kolkata, India, 2009, DOI: 10.1109/AEMC.2009.5430663.

26. Guha, D., S. Biswas, T. Joseph, and M. T. Sebastian, "Defected ground structure to reduce mutual coupling between cylindrical dielectric resonator antennas," Electronic Lett., Vol. 44, No. 14, 836-837, Jul. 2008.

27. Moghadas, H., A. Tavakoli, and M. Salehi, "Elimination of scan blindness in microstrip scanning array antennas using defected ground structure," Int. J. Electron. Commun., Vol. 62, 155-158, 2008.

28. Ostadzadeh, S. R., M. Soleimani, and M. Tayarani, "A fuzzy model for computing input impedance of two coupled dipole antennas in echelon form," Progress In Electromagnetics Research, Vol. 78, 265-283, 2008.

29. Ostadzadeh, S. R., M. Tayarani, and M. Soleimani, "A fuzzy model for computing back scattering respose from linearly loaded dipole antenna in the frequency domai," Progress In Electromagnetics Research, Vol. 86, 229-242, 2008.

30. Guney, K. and N. Sarikaya, "Comparison of Mamdani and Sugeno fuzzy inference system models for resonant frequency calculation of rectangular microstrip antennas," Progress In Electromagnetics Research B, Vol. 12, 81-104, 2009.

31., PDF Documents on Fuzzy Logic Toolbox of Matlab 7.10.0 http://www.mathworks.com/.