1. Michalski, K. A. and D. L. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part I: Theory," IEEE Trans. on Antennas and Propag., Vol. 38, No. 3, 335-344, Mar. 1990.
doi:10.1109/8.52240 Google Scholar
2. Michalski, K. A., D. L. Zheng, and , "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part II: Implementation and results for contiguous half-spaces," IEEE Trans. on Antennas and Propag., Vol. 38, No. 3, 345-352, Mar. 1990.
doi:10.1109/8.52241 Google Scholar
3. Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "The fast multipole method (FMM) for electromagnetic scattering problems," IEEE Trans. on Antennas and Propag., Vol. 40, No. 6, 634-641, Jun. 1992.
doi:10.1109/8.144597 Google Scholar
4. Coifman, R., V. Rokhlin, and S. M. Wandzura, "The fast multipole method (FMM) for the wave equation: A pedestrian prescription," IEEE Trans. on Antennas and Propag., Vol. 35, No. 3, 7-12, Jun. 1993.
doi:10.1109/74.250128 Google Scholar
5. Chen, J., S. Li, and M. Wang, "Targets identification method based on electromagnetic scattering analysis," 2011 IEEE CIE International Conference on Radar, Vol. 2, 1647-1651, Oct. 2011. Google Scholar
6. Chen, J., S. Li, and Y. Song, "Analysis of electromagnetic scattering problems by means of a VSIE-ODDM-MLFMA method," ACES Journal, Vol. 27, No. 8, 660-667, Aug. 2012. Google Scholar
7. Chen, J., M. Wang, S. Li, M. Zhu, J. Yu, and X. Li, "An IE-ODDM scheme combined with e±cient direct solver for 3D scattering problems," Micro. Opt. Tech. Lett., Vol. 55, No. 9, 2027-2033, Sep. 2013.
doi:10.1002/mop.27742 Google Scholar
8. Chang, X. and L. Tsang, "A new efficient method for modeling dense via arrays with 1D method of moment and group T matrix," 2012 Electrical Performance of Electronic Packaging International Symposium, 163-166, Tempe, AZ, USA, Oct. 2012. Google Scholar
9. Tsang, L. and X. Chang, "Modeling of vias sharing the same antipad in planar waveguide with boundary integral equation and group T matrix method," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 3, 315-327, Feb. 2013.
doi:10.1109/TCPMT.2012.2220771 Google Scholar
10. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surface of arbitrary shape," IEEE Trans. on Antennas and Propag., Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
11. Ergul, O. and L. Gurel, "Hybrid CFIE-EFIE solution of composite geometries with coexisting open and closed surfaces," IEEE Antennas Propag. Symp., Vol. 4B, 289-292, Jul. 2005. Google Scholar
12. Gurel, L. and O. Ergul, "Extending the applicability of the combined-field integral equation to geometries containing open surfaces," IEEE Antennas and Wirel. Propag. Lett., Vol. 5, 515-516, 2006.
doi:10.1109/LAWP.2006.887552 Google Scholar
13. Jakobus, U. and F. M. Landstorfer, "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Trans. on Antennas and Propag., Vol. 43, No. 2, 162-169, Feb. 1995.
doi:10.1109/8.366378 Google Scholar
14. Chen, H. T., G. Q. Zhu, J. X. Luo, and F. Yuan, "A modified MoM-PO method for analyzing wire antennas near to coated PEC plates," IEEE Trans. on Antennas and Propag., Vol. 56, No. 6, 1818-1822, Jun. 2008.
doi:10.1109/TAP.2008.923371 Google Scholar
15. Song, J. M. and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined field integral equation of electromagnetic scattering," Micro. Opt. Tech. Lett., Vol. 10, No. 1, 14-19, Sep. 1995.
doi:10.1002/mop.4650100107 Google Scholar
16. Lu, C. C. and W. C. Chew, "A multilevel algorithm for solving boundary integral equations of wave scattering," Micro. Opt. Tech. Lett., Vol. 7, No. 10, 466-470, Jul. 1994.
doi:10.1002/mop.4650071013 Google Scholar
17. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. on Antennas and Propag., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855 Google Scholar
18. Shao, H., J. Hu, Z.-P. Nie, G. Han, and S. He, "Hybrid tangential equivalence principle algorithm with MLFMA for analysis of array structures," Progress In Electromagnetics Research, Vol. 113, 127-141, 2011. Google Scholar
19. Ping, X. W., T.-J. Cui, and W. B. Lu, "The combination of BCGSTAB with multifrontal algorithm to solve FEBI-MLFMA linear systems arising from inhomogeneous electromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 93, 91-105, 2009.
doi:10.2528/PIER09050604 Google Scholar
20. Peng, Z., X.-Q. Sheng, and F. Yin, "An efficient twofold iterative algorithm of FE-BI-MLFMA using multilevel inverse-based ILU preconditioning," Progress In Electromagnetics Research, Vol. 93, 369-384, 2009.
doi:10.2528/PIER09060305 Google Scholar
21. Wallen, H. and J. Sarvas, "Translation procedures for broadband MLFMA," Progress In Electromagnetics Research, Vol. 55, 47-78, 2005.
doi:10.2528/PIER05021001 Google Scholar
22. Islam, S., J. Stiens, G. Poesen, R. Vounckx, J. Peeters, I. Bogaert, D. de Zutter, and W. de Raedt, "Simulation and experimental verification of w-band finite frequency selective surfaces on infinite background with 3D full wave solver NSPWMLFMA," Progress In Electromagnetics Research, Vol. 101, 189-202, 2010.
doi:10.2528/PIER09122104 Google Scholar
23. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603 Google Scholar