Vol. 32
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-08-24
Surface Electromagnetic Waves in Finite Semiconductor-Dielectric Periodic Structure in an External Magnetic Field
By
Progress In Electromagnetics Research M, Vol. 32, 229-244, 2013
Abstract
The specific features of TM-polarized surface electromagnetic waves in a finite structure fabricated by a periodic alternating semiconductor and dielectric layers are investigated. Dispersion characteristics of eigenwaves are analyzed numerically and analytically. The complex Poynting energy flux and the surface wave's distribution are calculated. The influence of geometrical and physical parameters of the structure on the properties of surface waves is studied.
Citation
Vladislava V. Baibak, Illia V. Fedorin, and Aleksey A. Bulgakov, "Surface Electromagnetic Waves in Finite Semiconductor-Dielectric Periodic Structure in an External Magnetic Field," Progress In Electromagnetics Research M, Vol. 32, 229-244, 2013.
doi:10.2528/PIERM13072310
References

1. Armstrong, C. M., "The truth about terahertz," IEEE Spectrum, Vol. 49, No. 9, 28-33, 2012.
doi:10.1109/MSPEC.2012.6281131        Google Scholar

2. Konopsky, V. N., T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, "Photonic crystal biosensor based on optical surface waves," Sensors, Vol. 13, 2566-2578, 2013.
doi:10.3390/s130202566        Google Scholar

3. Chen, Y.-H., J.-X. Fu, and Z.-Y. Li, "Surface wave holography on designing subwavelength metallic structures," Optics Express, Vol. 19, No. 24, 23908-23920, 2011.
doi:10.1364/OE.19.023908        Google Scholar

4. Su, S., L. Tang, and T. Yoshie, "Optical surface bloch modes of complete photonic bandgap materials as a basis of optical sensing," Opt. Lett., Vol. 36, 2266-2268, 2011.
doi:10.1364/OL.36.002266        Google Scholar

5. Hajian, H., B. Rezaei, A. S. Vala, and M. Kalafi, "Tuned switching of surface waves by a liquid crystal cap layer in one-dimensional photonic crystals," Applied Optics, Vol. 51, No. 15, 2909-2916, 2012.
doi:10.1364/AO.51.002909        Google Scholar

6. Usievich, B. A., V. V. Svetikov, D. K. Nurligareev, and V. A. Sychugov, "Surface waves on the boundary of photonic crystals and tunnelling coupling between two photonic crystals via these waves," Quantum Electronics, Vol. 39, No. 1, 94-97, 2009.
doi:10.1070/QE2009v039n01ABEH013885        Google Scholar

7. Zhang, X.-C., "Terahertz wave imaging: Horizons and hurdles," Phys. Med. Biol., Vol. 47, 3667-3677, 2002.
doi:10.1088/0031-9155/47/21/301        Google Scholar

8. Engheta, N. and R. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley, IEEE Press, Piscataway, NJ, 2006.

9. Bass, F. G. and A. A. Bulgakov, Kinetic and Electrodynamic Phenomena in Classical and Quantum Semiconductor Superlattices, Nova Science, New York, 1997.

10. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620        Google Scholar

11. Reinhard, B., O. Paul, R. Beigang, and M. Rahm, "Experimental and numerical studies of terahertz surface waves on a thin metamaterial film," Optics Letters, Vol. 35, 1320-1322, 2010.
doi:10.1364/OL.35.001320        Google Scholar

12. Zhu, W., A. Agrawal, and A. Nahata, "Planar plasmonic terahertz guided-wave devices," Opt. Express, Vol. 16, No. 9, 6216-6226, 2008.
doi:10.1364/OE.16.006216        Google Scholar

13. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Vol. 64, No. 5, 056625(15), 2001.
doi:10.1103/PhysRevE.64.056625        Google Scholar

14. Bulgakov, A. A., A. A. Girich, M. K. Khodzitsky, O. V. Shramkova, and S. I. Tarapov, "Transmission of electromagnetic waves in a magnetic fine-stratified structure," J. Opt. Soc. Am. B, Vol. 26, No. 12, B156-B160, 2009.
doi:10.1364/JOSAB.26.00B156        Google Scholar

15. Shramkova, O. V., "Transmission spectra in ferrite-semiconductor periodic structure," Progress In Electromagnetics Research M, Vol. 7, 71-85, 2009.
doi:10.2528/PIERM09041305        Google Scholar

16. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966        Google Scholar

17. Markos, P. and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials, Princeton University Press, New Jersey, 2008.

18. Ishimaru, A., J. R. Thomas, and S. Jaruwatanadilok, "Electromagnetic waves over half-space metamaterials of arbitrary permittivity and permeability," EEE Transactions on Antennas and Propagations, Vol. 53, No. 3, 915-921, Mar. 2005.
doi:10.1109/TAP.2004.842572        Google Scholar

19. Darmanyan, S. A., M. Neviere, and A. A. Zakhidov, "Surface modes at the interface of conventional and left-handed media," Optics Communications, Vol. 225, 233-240, 2003.
doi:10.1016/j.optcom.2003.07.047        Google Scholar

20. Agranovich, V. M. and D. L. Mills, Surface Polaritons. Electromagnetic Waves at Surfaces and Interfaces, North-Holland, Amsterdam, 1982.

21. Pacheco, J., T. M. Grzegorzcyk, B. I. Wu, Y. Zhang, and J. A. Kong, "Wave propagation in homogeneous isotropic frequency-dispersive left-handed media," Phys. Rev. Lett., Vol. 89, No. 25, 257401(4), 2002.
doi:10.1103/PhysRevLett.89.257401        Google Scholar

22. Iorsh, I. V., P. A. Belov, A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear Tamm states in nanostructured plasmonic metamaterials," Phys. Rev. A, Vol. 86, No. 2, 023819(6), 2012.
doi:10.1103/PhysRevA.86.023819        Google Scholar

23. Zhou, L. and C. T. Chan, "High-impedance reflectivity and surface-wave band gaps in metamaterials," Applied Physics Letters, Vol. 84, No. 9, 1444-1446, Mar. 1, 2004.
doi:10.1063/1.1652236        Google Scholar

24. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory & Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001        Google Scholar

25. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, 847-848, 2004.
doi:10.1126/science.1098999        Google Scholar

26. Navarro-Cia, M., M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, "Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms," Opt. Express, Vol. 17, No. 20, 18184-18195, 2009.
doi:10.1364/OE.17.018184        Google Scholar

27. Ishimaru, A., S. Jaruwatanadilok, and Y. Kuga, "Generalized surface plasmon resonance sensors using metameterials and negative index materials," Progress In Electromagnetics Research, Vol. 51, 139-152, 2005.
doi:10.2528/PIER04020603        Google Scholar

28. Hudlicka, M., J. Machac, and I. S. Nefedov, "A triple wire medium as an isotropic negative permittivity metamaterial," Progress In Electromagnetics Research, Vol. 65, 233-246, 2006.
doi:10.2528/PIER06102703        Google Scholar

29. Baccarelli, P., P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Fundamental modal properties of surface waves on metamaterial grounded slabs," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1431-1442, 2005.
doi:10.1109/TMTT.2005.845208        Google Scholar

30. Woldeyohannes, M., J. Schenk, R. Ingel, S. Rigdon, M. Pate, J. Graham, M. Clare, W. Yang, and M. Fiddy, "Internal field distribution measurement in 1-D strongly anisotropic subwavelength periodic structures of finite length," Optics Express, Vol. 19, No. 1, 81-92, 2011.
doi:10.1364/OE.19.000081        Google Scholar

31. Francisco, V. and J. A. Gaspar-Armenta, "Electromagnetic surface waves: Photonic crystal-photonic crystal interface," Optics Communications, Vol. 223, 109-115, 2003.        Google Scholar

32. Gaspar-Armentaa, J. A., F. Villaa, and T. Lopez-Ros, "Surface waves in finite one-dimensional photonic crystals: Mode coupling," Optics Communications, Vol. 216, 379-384, 2003.
doi:10.1016/S0030-4018(02)02361-1        Google Scholar

33. Meessen, A., "Production of EM surface waves by superconducting spheres: A new type of harmonic oscillators," Progress In Electromagnetics Research Symposium Proceedings, 529-533, Moscow, Russia, Aug. 19-23, 2012.        Google Scholar

34. Averkov, Y. O., V. M. Yakovenko, V. A. Yampol'skii, and F. Nori, "Oblique surface Josephson plasma waves in layered superconductors," Phys. Rev. B, Vol. 87, 054505(8), 2013.        Google Scholar

35. Mousa, H. M., "Stability of nonlinear TE surface waves along the boundary of left-handed material," Optics and Photonics Journal, Vol. 2, No. 2, 123-128, 2012.
doi:10.4236/opj.2012.22017        Google Scholar

36. Liu, X. X., C. F. Tsai, R. L. Chern, and D. P. Tsai, "Dispersion mechanism of surface magnetoplasmons in periodic layered structures," Applied Optics, Vol. 48, No. 16, 3102-3107, 2009.
doi:10.1364/AO.48.003102        Google Scholar

37. Bulgakov, A. A. and O. V. Shramkova, "Reflection coefficient of a semiconductor superlattice subjected to a magnetic field," Semiconductors, Vol. 34, No. 6, 686-692, 2000.
doi:10.1134/1.1188056        Google Scholar

38. Yariv, A., P. Yeh, and C.-S. Hong, "Electromagnetic propagation in periodic stratified media," J. Opt. Soc. Am., Vol. 67, No. 4, 423, 1977.
doi:10.1364/JOSA.67.000438        Google Scholar

39. Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book Company, Inc., New York and London, 1953.

40. Collin, R. E., Field Theory of Guided Waves, IEEE Press, New York, 1991.

41. Fedorin, I. V. and A. A. Bulgako, "Surface plasmon polaritons in subwavelength semiconductor-dielectric periodic structure in an external magnetic field," Proc. of Metamaterials 2012 Congress, 288-290, St. Petersburg, Russia, 2012.        Google Scholar