Vol. 47
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-01-25
Non-Segmented Grain Oriented Steel in Induction Machines
By
Progress In Electromagnetics Research C, Vol. 47, 1-10, 2014
Abstract
This paper presents a technical which improves energy efficiency of AC rotating machines by using Grain Oriented (GO) steel at stator core instead of Non Oriented (NO) steel. The losses of GO steel are less important only if the magnetic flux circulates along the rolling direction; consequently it is rarely used in AC machines where the magnetic flux rotates. By stacking many shifted GO laminations of AC machine stator, the flux pass from one lamination to another, and the core losses are reduced. A lot of experimentations have been done with unidirectional field, rotating field and with real induction machines. They show important improvements with GO shifted steel. The efficiency difference between a classical 10kW induction machine and a modified machine with GO stator is more than 2 points. Moreover, the no-load current and so the reactive power are smaller. This technical creates environmental and financial gains.
Citation
Bertrand Cassoret, Samuel Lopez, Jean-Francois Brudny, and Thierry Belgrand, "Non-Segmented Grain Oriented Steel in Induction Machines," Progress In Electromagnetics Research C, Vol. 47, 1-10, 2014.
doi:10.2528/PIERC13112007
References

1. Heinberg, R., The Party’s Over: Oil, War and the Fate of Industrial Societies, Kindle Edition, 2005.

2. Hanitsch, R., "Energy efficient electric motors," World, Climate and Energy Event, Rio, 2002.

3. "Rotating electrical machines-efficiency classes of single-speed, three-phase, cage-induction motors,", International Standard IEC 60034-30, 2008.

4. Aoulkadi, M. and A. Binder, "When loads stray: Evaluation of different measurement methods to determine stray load losses in induction machines," IEEE Industrial Electronics Magazine, Vol. 2, No. 1, 21-30, Mar. 2008.
doi:10.1109/MIE.2007.909537

5. Nagornyy, A., A. K. Wallace, and A. V. Jouanne, "Stray load loss efficiency connections," IEEE Industry Applications Magazine, Vol. 10, No. 3, 62-69, 2004.
doi:10.1109/MIA.2004.1286621

6. Enokizono, M., T. Todaka, H. Shimoji, and A. Ikariga, "Optimum design of rotating machines using grain-oriented electrical steel sheet by two-dimensional vector magnetic property," nternational Aegean Conference on Electrical Machines and Power Electronics, ACEMP’ 07, 468-473, 2007.

7. Steinmetz, C., "On the law of hysteresis," Proceedings of the IEEE, Vol. 72, 197-221, 1984.
doi:10.1109/PROC.1984.12842

8. Bertotti, G., "General properties of power losses in soft ferromagnetic materials," IEEE Trans. on Magnetics, Vol. 24, No. 1, 621-630, Jan. 1988.
doi:10.1109/20.43994

9. Lopez, S., "D´efinition de nouvelles structures de circuits magnetiques de machines a courant alternatif utilisant des toles a grains orientes,", Ph.D. Thesis, Univ. Lille Nord de France, Univ. Artois, LSEE, France, 2011.

10. Hihat, N., K. Komeza, E. Napieralska, and J. P. Lecointe, "Experimental and numerical characterization of magnetically anisotropic laminations in the direction normal to their surface," IEEE Trans. on Magnetics, Vol. 47, No. 11, 4517-452, Oct. 2011.
doi:10.1109/TMAG.2011.2158845

11. Andrei, H. and F. Spinei, "The minimum energetical principle in electric and magnetic circuits," Proc. 18th ECCTD, Vol. 99, 906-909, 2007.

12. Parent, G., R. Penin, J. P. Lecointe, J. F. Brudny, and T. Belgrand, "Analysis of the magnetic flux distribution in a new shifted non segmented grain oriented AC motor magnetic circuit," IEEE Trans. on Magnetics, Vol. 49, No. 5, 1977-1980, Apr. 2013.
doi:10.1109/TMAG.2013.2244586

13. Lopez, S., B. Cassoret, J. F. Brudny, L. Lefebvre, and J. N. Vincent, "Grain oriented steel assembly characterization for the development of high efficiency AC rotating electrical machines," IEEE Trans. on Magnetics, Vol. 45, No. 10, 4161-4164, Oct. 2009.
doi:10.1109/TMAG.2009.2023243

14. Brudny, J. F., B. Cassoret, R. Lemaitre, and J. N. Vincent, "Magnetic core and use of magnetic core for electrical machines,", International Patent PCT/EP2008/061884, Mar. 2009.

15. Findlay, R. D., N. Stranges, and D. K. MacKay, "Losses due to rotational flux in three phase induction motors," IEEE Trans. on Energy Conversion, Vol. 9, No. 3, 543-549, 1994.
doi:10.1109/60.326474

16. Lopez, S., L. Lefebvre, B. Cassoret, J. F. Brudny, and J. N. Vincent, "Validation of a high efficiency AC rotating electrical machine magnetic circuit by particular tests at standstill," Proc. Soft Magnetic Materials, Ref. C2-01, Torino, Italy, Sep. 2009.

17. Cao, W., "Comparison of IEEE 112 and new IEC Standard 60034-2-1," IEEE Trans. on Energy Conversion, Vol. 24, No. 3, 802-808, 2009.
doi:10.1109/TEC.2009.2025321

18. McKinnon, D. J. and C. Grantham, "Improved efficiency test methods for three-phase induction machines," Industry Applications Conference, Fourtieth IAS Annual Meeting, Conference Record of the 2005, Vol. 1, 466-473, 2005.
doi:10.1109/IAS.2005.1518349

19. Boughanmi, W., J. P. Manata, D. Roger, T. Jacq, and F. Streiff, "Life cycle assessment of a three-phase electrical machine in continuous operation," IET Electric Power Applications, Vol. 6, No. 5, 277-285, 2012.
doi:10.1049/iet-epa.2011.0219

20. Demian, C., B. Cassoret, J. F. Brudny, and T. Belgrand, "AC magnetic circuits using non segmented shifted grain oriented electrical steel sheets: Impact on induction machine magnetic noise," IEEE Trans. on Magnetics, Vol. 48, No. 4, 1409-1412, 2012.
doi:10.1109/TMAG.2011.2174146

21. Penin, R., J. P. Lecointe, G. Parent, J. F. Brudny, and T. Belgrand, "Estimation of relative magnetostriction and Maxwell’s forces in stacked grain oriented steel structures," Proc. International Conference on Electrical Machines, 1971-1976, Sep. 2012.