Vol. 35
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-02-26
A Robust Method of Calculating the Effective Length of a Conductive Strip on an Ungrounded Dielectric Substrate
By
Progress In Electromagnetics Research M, Vol. 35, 57-66, 2014
Abstract
Dipole antennas on a substrate without a ground plane are common in wireless sensor networks and RFID applications. This paper reviews a number of theoretical approaches to solving for the effective permittivity when the substrate material is thin. The surface impedance and slab waveguide propagation techniques are compared to a capacitive solution and an insulated wire antenna. The insulated wire method gives most accurate results (< 3.5%) and was verified using numerical modeling and experimental work. Measurements on a planar straight dipole on FR4 (fc = 1.50 GHz) compare favorably with the antenna modelled without the substrate and scaled using the insulated wire technique at (fc = 1.49 GHz). The method can be readily incorporate the effect of an RFID antenna on a thin plastic film placed on a wide variety of lossy and lossless objects.
Citation
Manimaran Kanesan David V. Thiel Steven O'Keefe , "A Robust Method of Calculating the Effective Length of a Conductive Strip on an Ungrounded Dielectric Substrate," Progress In Electromagnetics Research M, Vol. 35, 57-66, 2014.
doi:10.2528/PIERM13122404
http://www.jpier.org/PIERM/pier.php?paper=13122404
References

1. Finkenzeller, D. K., RFID Handbook: Radio-frequency Identification Fundamentals and Applications, 2nd Ed., J. Wiley & Sons, New York, 2003.

2. Kanesan, M., D. V. Thiel, A. Galehdar, and S. G. O'Keefe, "Rapid analysis and optimization of planar Yagi-Uda dipole arrays printed on a dielectric substrate," Int. J. RF Microwave Comput.-Aided Eng., 2013, Doi: 10.1002/mmce.20747.

3. Abbosh, A., "Accurate effective permittivity calculation of printed center-fed dipoles and its application to quasi Yagi-Uda antennas," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 2297-2300, 2013.
doi:10.1109/TAP.2012.2231925

4. Kanesan, M., D. V. Thiel, and S. G. O'Keefe, "The effect of lossy dielectric objects on a UHF RFID meander line antenna," IEEE AP-S International Symposium, 1-2, Chicago, Jul. 2012.

5. Jackson, D. and N. Alexopoulos, "Analysis of planar strip geometries in a substrate-superstrate configuration," IEEE Trans. Antennas Propag., Vol. 34, No. 12, 1430-1438, 1986.
doi:10.1109/TAP.1986.1143784

6. Delgado, H. J. and M. H. Thursby, "A novel neural network combined with FDTD for the synthesis of a printed dipole antenna," IEEE Trans. Antennas Propag., Vol. 53, No. 7, 2231-2236, 2005.
doi:10.1109/TAP.2005.850706

7. Zhang, Y., Z. N. Chen, and M. Y. W. Chia, "Characteristics of planar dipoles printed on finite-size PCBs in UWB radio systems," IEEE AP-S International Symposium, Vol. 3, 2512-2515, Monterey, Jun. 2004.

8. Arima, T., T. Uno, and M. Takahashi, "FDTD analysis of printed antenna on thin dielectric sheet including quasi-static approximation," IEEE AP-S International Symposium, Vol. 1, 1022-1025, Monterey, Jun. 2004.

9. Plus, N.-W., User's Manual, Nittany Scientific Inc., 2003.

10. Hallen, E., "Theoretical investigation in the transmitting and receiving qualities of antennae," Nova Acta Regiae Soc. Sci. Upsaliensis, Ser. IV, Vol. 11, 1-44, 1938.

11. Cheng, D. K., Field and Wave Electromagnetics, 2nd Ed., Addison-Wesley, MA, 1983.

12. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., IEEE-Press, NY, 1991.

13. Wait, J. R., Electromagnetic Waves in Stratified Media, IEEE-Press, NY, 1995.

14. Seshadri, S. R., Fundamentals of Transmission Lines and Electromagnetic Fields, Addison-Wesley, MA, 1971.

15. Thiel, D. V. and S. Smith, Switched Parasitic Antennas for Cellular Communications, Artech House, MA, 2002.