Vol. 35
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-03-20
Optical Bistability in a Grating with Slits Filled Nonlinear Media
By
Progress In Electromagnetics Research M, Vol. 35, 133-139, 2014
Abstract
An approximate self-consistent solution of the problem of plane electromagnetic wave diffraction on a thick grating of metallic bars with slits between the bars filled a Kerr-type nonlinear dielectric is solved. The bistable operating regime of wave transmission through the grating is studied.
Citation
Lyudmila A. Kochetova, Segiy L. Prosvirnin, and Vladimir R. Tuz, "Optical Bistability in a Grating with Slits Filled Nonlinear Media," Progress In Electromagnetics Research M, Vol. 35, 133-139, 2014.
doi:10.2528/PIERM14012606
References

1. Shestopalov, V. P., L. N. Litvinenko, S. A. Masalov, and V. G. Sologub, Wave Di?raction by Gratings, Kharkov State University, 1973 (in Russian).

2. Garcia-Vidal, F. J., L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Rev. Mod. Phys.,, Vol. 82, 729-787, 2010.
doi:10.1103/RevModPhys.82.729

3. Gibbs, H. M., Optical Bistability: Controlling Light with Light, Academic Press, Orlando, 1985.

4. Solja·cic, M., C. Luo, J. D. Joannopoulos, and S. Fan, "Nonlinear photonic crystal microdevices for optical integration," Opt. Lett., Vol. 28, No. 8, 637-639, 2003.
doi:10.1364/OL.28.000637

5. Chen, X., "Intrinsic optical intersubband bistability and saturation in a quantum well microcavity structure," J. Opt. B: Quantum Semiclass. Opt., Vol. 1, No. 5, 524-528, 1999.
doi:10.1088/1464-4266/1/5/305

6. Wurtz, G. A., R. Pollard, and A. V. Zayats, "Optical bistability in nonlinear surface-plasmon polaritonic crystals," Phys. Rev. Lett., Vol. 97, No. 5, 057402, 2006.
doi:10.1103/PhysRevLett.97.057402

7. Porto, J. A., L. Martin-Moreno, and F. J. Garcia-Vidal, "Optical bistability in subwavelength slit apertures containing nonlinear media," Phys. Rev. B, Vol. 70, 081402, 2004.
doi:10.1103/PhysRevB.70.081402

8. Min, C., P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, "All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials," Opt. Lett., Vol. 33, No. 8, 869-871, 2008.
doi:10.1364/OL.33.000869

9. Kochetova, L. A., S. L. Prosvirnin, and V. R. Tuz, "Bistable wave transmission through a metal screen with single slit filled nonlinear dielectric," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2249-2257, 2010.
doi:10.1163/156939310793699154

10. Carretero-Palacios, S., A. Minovich, D. N. Neshev, Y. S. Kivshar, F. J. Garcia-Vidal, L. Martin-Moreno, and S. G. Rodrigo, "Optical switching in metal-slit arrays on nonlinear dielectric substrates," Opt. Lett., Vol. 35, No. 24, 4211-4213, 2010.
doi:10.1364/OL.35.004211

11. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

12. Zharov, A. A., I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear properties of left-handed metamaterials," Phys. Rev. Lett., Vol. 91, No. 3, 037401, 2003.
doi:10.1103/PhysRevLett.91.037401

13. Tuz, V. R., S. L. Prosvirnin, and L. A. Kochetova, "Optical bistability involving planar metamaterials with broken structural symmetry," Phys. Rev. B, Vol. 82, No. 23, 233402, 2010.
doi:10.1103/PhysRevB.82.233402

14. Tuz, V. R. and S. L. Prosvirnin, "All-optical switching in metamaterial with high structural symmetry," Eur. Phys. J. Appl. Phys., Vol. 56, No. 3, 30401, 2011.
doi:10.1051/epjap/2011110145

15. Tuz, V. R., V. S. Butylkin, and S. L. Prosvirnin, "Enhancement of absorption bistability by trapping-light planar metamaterial," J. Opt., Vol. 14, No. 4, 129-132, 2012.
doi:10.1088/2040-8978/14/4/045102

16. Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, Boston, 1991.

17. Born, M. and E. Wolf, Principles of Optics,, Pergamon Press, Oxford, 1968.

18. Rytov, S. M., "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP, Vol. 2, 466-475, 1956.

19. Sipe, J. E. and R. W. Boyd, "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model," Phys. Rev. A, Vol. 46, No. 3, 1614-1629, 1992.
doi:10.1103/PhysRevA.46.1614

20. Boyd, R. W., R. J. Gehr, G. L. Fischer, and J. E. Sipe, "Nonlinear optical properties of nanocomposite materials," Pure Appl. Opt.: J. Eur. Opt. Soc. Part A, Vol. 5, No. 5, 505-512, 1996.
doi:10.1088/0963-9659/5/5/005

21. Sarychev, A. K., R. C. McPhedran, and V. M. Shalaev, "Electrodynamics of metal-dielectric composites and electromagnetic crystals," Phys. Rev. B, Vol. 62, No. 12, 8531-8539, 2000.
doi:10.1103/PhysRevB.62.8531

22. Kazanskiy, V. B. and V. R. Tuz, "The long-wave theory of N pairwise alternate homogeneous and heterogeneous layers diffraction," Radioelectronics and Communications Systems, Vol. 51, 16-23, 2008.
doi:10.3103/S0735272708010032

23. Noskov, R. E. and A. A. Zharov, "Optical bistability of planar metal/dielectric nonlinear nanostructures," Opto-electronics Review, Vol. 14, No. 3, 217-223, 2006.
doi:10.2478/s11772-006-0029-6