1. Sipe, J. E., L. Poladian, and C. Martijn de Sterke, "Propagation through nonuniform grating structures," J. Opt. Soc. Am. A, Vol. 11, No. 4, 1307-1320, Apr. 1994.
doi:10.1364/JOSAA.11.001307 Google Scholar
2. Wang, X., W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, "Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations," IEEE Photon. Tech. Lett., Vol. 23, 290-292, 2011.
doi:10.1109/LPT.2010.2098436 Google Scholar
3. Giuntoni, I., D. Stolarek, A. Gajda, J. B. G. Winzer, B. Tillack, K. Petermann, and L. Zimmerman, "Integrated drop-filter for dispersion compensation based on SOI rib waveguides," Optical Fiber Communication Conference, OSA Technical Digest, Paper OThJ5, San Diego, CA, 2010. Google Scholar
4. Fang, A. W., E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, "A distributed feedback silicon evanescent laser," Opt. Express, Vol. 6, No. 7, 4413-4419, 2008.
doi:10.1364/OE.16.004413 Google Scholar
5. Berger, N. K., B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, "Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating," Opt. Express, Vol. 15, No. 2, 371-377, 2006.
doi:10.1364/OE.15.000371 Google Scholar
6. Chrostowski, L., S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, "Silicon photonic resonator sensors and devices," Proceedings of SPIE, Vol. 8236, 823620, 2012.
doi:10.1117/12.916860 Google Scholar
7. Tan, D. T. H., K. Ikeda, and Y. Fainman, "Coupled chirped vertical gratings for on-chip group velocity dispersion engineering," Appl. Phys. Lett., Vol. 95, 141109, 2009.
doi:10.1063/1.3242028 Google Scholar
8. Shi, W., X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, "Contradirectional couplers in silicon-on-insulator rib waveguides," Opt. Lett., Vol. 36, 3999-4001, 2011.
doi:10.1364/OL.36.003999 Google Scholar
9. Mekis, A., S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, "A grating-coupler-enabled CMOS photonics platform," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 17, No. 3, 597-608, 2011.
doi:10.1109/JSTQE.2010.2086049 Google Scholar
10. Shi, W., X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, "Silicon photonic grating-assisted, contra-directional couplers," Opt. Express, Vol. 21, No. 3, 3633, 2013.
doi:10.1364/OE.21.003633 Google Scholar
11. Raghuwanshi, S. K., V. Kumar, and S. Talabattula, "Dispersion and peak reflectivity analysis in a non-uniform FBG based sensors due to arbitrary refractive index profile," Progress In Electromagnetics Research B, Vol. 36, 249-265, 2012.
doi:10.2528/PIERB11081704 Google Scholar
12. Riziotis, C. and M. N. Zervas, "Design considerations of optical Add-Drop filters based on grating assisted mode conversion in null couplers," Journal of Lightwave Technology, Vol. 19, No. 1, 92-104, Jan. 2001.
doi:10.1109/50.914490 Google Scholar
13. Erdogn, T., "Fiber grating spectra," Journal of Lightwave Technology, Vol. 15, No. 8, 1277-1294, Aug. 1997.
doi:10.1109/50.618322 Google Scholar
14. Sun, N.-H., J.-J. Liau, Y.-W. Kiang, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, and H.-W. Chang, "Numerical analysis of apodized fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 99, 289-306, 2009.
doi:10.2528/PIER09102704 Google Scholar
15. Watanabe, K., J. Ishihara, and K. Yasumoto, "Coupled-mode analysis of a grating-assisted directional coupler using singular perturbation technique," Progress In Electromagnetics Research, Vol. 25, 23-37, 2000.
doi:10.2528/PIER99040503 Google Scholar
16. Weber, J.-P., "Spectral characteristics of coupled-waveguide Bragg-reflection tunable optical filter," IEE Proceedings J --- Optoelectronics, Vol. 140, No. 5, 275-284, Oct. 1993.
doi:10.1049/ip-j.1993.0045 Google Scholar
17. Chen, C. T., Linear System Theory and Design, Holt, New York, 1984.
18. Raghuwanshi, S. K. and S. Talabattula, "Analytical method to estimate the bandwidth of an uniform FBG based instrument," J. Instrum. Soc., Vol. 37, No. 4, 297-308, India, 2007. Google Scholar
19. Raghuwanshi, S. K. and S. Talabattula, "Asymmetric dispersion and pulse distortion in an uniform fiber Bragg gratings," Indian J. Phys., Vol. 82, No. 12, 1-7, Springer, Dec. 2008. Google Scholar
20. Zhao, Y. and J. C. Palais, "Fiber Bragg grating coherence spectrum modeling, simulation, and characteristics," Journal of Lightwave Technology, Vol. 15, No. 1, Jan. 1997.
doi:10.1109/50.552108 Google Scholar
21. Riziotis, C., Advanced Bragg grating based integrated optical devices for wavelength division multiplexing systems, University of Southampton, Sep. 2001.
22. Hill, K. O. and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," Journal of Lightwave Technology, Vol. 15, No. 8, 1263-1276, Aug. 1997.
doi:10.1109/50.618320 Google Scholar
23. Hill, K. O., "Photosensitivity in optical fiber waveguides: From discovery to commercialization," IEEE Journal on Selected Topics in Quantum Electronics, Vol. 6, No. 6, 1186-1189, Nov./Dec. 2000.
doi:10.1109/2944.902166 Google Scholar
24. Kashyap, R., Fiber Bragg Gratings, Academic Press, 1999.
25. Othonos, A. and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, Artech House, 1999.
26. Ghatak, A. and K. Thyagarajan, An Introduction to Fiber Optics, Cambridge University Press, 1998.
27. Yariv, A., "Coupled-mode theory for guided-wave optics," IEEE Journal of Quantum Electronics, Vol. 9, No. 9, 919-933, Sep. 1973.
doi:10.1109/JQE.1973.1077767 Google Scholar
28. Huang, W.-P., "Coupled-mode theory for optical waveguides: An overview," J. Opt. Soc. Am. A, Vol. 11, No. 3, 963-983, Mar. 1994.
doi:10.1364/JOSAA.11.000963 Google Scholar