Vol. 36
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-04-29
A Complete Analytical Analysis and Modeling of Few Mode Non-Uniform Fiber Bragg Grating Assisted Sensing Waveguide Devices
By
Progress In Electromagnetics Research M, Vol. 36, 23-37, 2014
Abstract
In this paper, we develop and present a complete analytical method to analyze the spectral response of a non-uniform multimode fiber Bragg grating assisted devices supporting a few modes. We present the analytical solution while taking into account the two forward and two backward propagating even or odd normal modes of the grating using the matrix method of multimode coupled grating assisted coupler, for sensing application. Earlier, these types of numerical technique based analysis were presented by other researchers, but no one seems to present a complete analytical solution for the given case. The present analytical analysis can simulate a single mode to multimode coupled sensing waveguide devices based on non-uniform grating assisted operation in a coupled structure. The potential applications of our findings will be mostly in sensing devices.
Citation
Sanjeev Kumar Raghuwanshi, and Debi Prasad Panda, "A Complete Analytical Analysis and Modeling of Few Mode Non-Uniform Fiber Bragg Grating Assisted Sensing Waveguide Devices," Progress In Electromagnetics Research M, Vol. 36, 23-37, 2014.
doi:10.2528/PIERM14022304
References

1. Sipe, J. E., L. Poladian, and C. Martijn de Sterke, "Propagation through nonuniform grating structures," J. Opt. Soc. Am. A, Vol. 11, No. 4, 1307-1320, Apr. 1994.
doi:10.1364/JOSAA.11.001307

2. Wang, X., W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, "Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations," IEEE Photon. Tech. Lett., Vol. 23, 290-292, 2011.
doi:10.1109/LPT.2010.2098436

3. Giuntoni, I., D. Stolarek, A. Gajda, J. B. G. Winzer, B. Tillack, K. Petermann, and L. Zimmerman, "Integrated drop-filter for dispersion compensation based on SOI rib waveguides," Optical Fiber Communication Conference, OSA Technical Digest, Paper OThJ5, San Diego, CA, 2010.

4. Fang, A. W., E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, "A distributed feedback silicon evanescent laser," Opt. Express, Vol. 6, No. 7, 4413-4419, 2008.
doi:10.1364/OE.16.004413

5. Berger, N. K., B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, "Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating," Opt. Express, Vol. 15, No. 2, 371-377, 2006.
doi:10.1364/OE.15.000371

6. Chrostowski, L., S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, "Silicon photonic resonator sensors and devices," Proceedings of SPIE, Vol. 8236, 823620, 2012.
doi:10.1117/12.916860

7. Tan, D. T. H., K. Ikeda, and Y. Fainman, "Coupled chirped vertical gratings for on-chip group velocity dispersion engineering," Appl. Phys. Lett., Vol. 95, 141109, 2009.
doi:10.1063/1.3242028

8. Shi, W., X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, "Contradirectional couplers in silicon-on-insulator rib waveguides," Opt. Lett., Vol. 36, 3999-4001, 2011.
doi:10.1364/OL.36.003999

9. Mekis, A., S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, "A grating-coupler-enabled CMOS photonics platform," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 17, No. 3, 597-608, 2011.
doi:10.1109/JSTQE.2010.2086049

10. Shi, W., X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, "Silicon photonic grating-assisted, contra-directional couplers," Opt. Express, Vol. 21, No. 3, 3633, 2013.
doi:10.1364/OE.21.003633

11. Raghuwanshi, S. K., V. Kumar, and S. Talabattula, "Dispersion and peak reflectivity analysis in a non-uniform FBG based sensors due to arbitrary refractive index profile," Progress In Electromagnetics Research B, Vol. 36, 249-265, 2012.
doi:10.2528/PIERB11081704

12. Riziotis, C. and M. N. Zervas, "Design considerations of optical Add-Drop filters based on grating assisted mode conversion in null couplers," Journal of Lightwave Technology, Vol. 19, No. 1, 92-104, Jan. 2001.
doi:10.1109/50.914490

13. Erdogn, T., "Fiber grating spectra," Journal of Lightwave Technology, Vol. 15, No. 8, 1277-1294, Aug. 1997.
doi:10.1109/50.618322

14. Sun, N.-H., J.-J. Liau, Y.-W. Kiang, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, and H.-W. Chang, "Numerical analysis of apodized fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 99, 289-306, 2009.
doi:10.2528/PIER09102704

15. Watanabe, K., J. Ishihara, and K. Yasumoto, "Coupled-mode analysis of a grating-assisted directional coupler using singular perturbation technique," Progress In Electromagnetics Research, Vol. 25, 23-37, 2000.
doi:10.2528/PIER99040503

16. Weber, J.-P., "Spectral characteristics of coupled-waveguide Bragg-reflection tunable optical filter," IEE Proceedings J --- Optoelectronics, Vol. 140, No. 5, 275-284, Oct. 1993.
doi:10.1049/ip-j.1993.0045

17. Chen, C. T., Linear System Theory and Design, Holt, New York, 1984.

18. Raghuwanshi, S. K. and S. Talabattula, "Analytical method to estimate the bandwidth of an uniform FBG based instrument," J. Instrum. Soc., Vol. 37, No. 4, 297-308, India, 2007.

19. Raghuwanshi, S. K. and S. Talabattula, "Asymmetric dispersion and pulse distortion in an uniform fiber Bragg gratings," Indian J. Phys., Vol. 82, No. 12, 1-7, Springer, Dec. 2008.

20. Zhao, Y. and J. C. Palais, "Fiber Bragg grating coherence spectrum modeling, simulation, and characteristics," Journal of Lightwave Technology, Vol. 15, No. 1, Jan. 1997.
doi:10.1109/50.552108

21. Riziotis, C., Advanced Bragg grating based integrated optical devices for wavelength division multiplexing systems, University of Southampton, Sep. 2001.

22. Hill, K. O. and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," Journal of Lightwave Technology, Vol. 15, No. 8, 1263-1276, Aug. 1997.
doi:10.1109/50.618320

23. Hill, K. O., "Photosensitivity in optical fiber waveguides: From discovery to commercialization," IEEE Journal on Selected Topics in Quantum Electronics, Vol. 6, No. 6, 1186-1189, Nov./Dec. 2000.
doi:10.1109/2944.902166

24. Kashyap, R., Fiber Bragg Gratings, Academic Press, 1999.

25. Othonos, A. and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, Artech House, 1999.

26. Ghatak, A. and K. Thyagarajan, An Introduction to Fiber Optics, Cambridge University Press, 1998.

27. Yariv, A., "Coupled-mode theory for guided-wave optics," IEEE Journal of Quantum Electronics, Vol. 9, No. 9, 919-933, Sep. 1973.
doi:10.1109/JQE.1973.1077767

28. Huang, W.-P., "Coupled-mode theory for optical waveguides: An overview," J. Opt. Soc. Am. A, Vol. 11, No. 3, 963-983, Mar. 1994.
doi:10.1364/JOSAA.11.000963