Vol. 36
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-05-22
Bistatic Forward-Looking Synthetic Aperture Radar Imaging Based on the Modified Loffeld's Bistatic Formula
By
Progress In Electromagnetics Research M, Vol. 36, 117-129, 2014
Abstract
Bistatic forward-looking SAR (BF.SAR) has many potential applications, such as self-landing in bad weather and military detection. Therefore, BFSAR receives considerable attention recently. The imaging algorithms for BFSAR are the difficulties of the study. The original Loffeld's Bistatic Formula (LBF) can handle most general bistatic SAR configurations well. But in some complex bistatic geometries, such as high squint or forward-looking cases, the performance of LBF is degenerated. Some extended LBF (ELBF) methods have been developed, which improve the performance of LBF in some special geometries, but still not the forward-looking configuration. In this paper, we modify the LBF method and try to solve the instantaneous azimuth frequencies of transmitter and receiver directly. Then, we can obtain a bistatic point target reference spectrum (BPTRS), which is accurate enough for forward-looking configuration. A range Doppler algorithm (RDA) based on this BPTRS is derived. Finally, simulations validate the accuracy of the modified Loffeld's Bistatic Formula (MLBF) and effectiveness of imaging algorithm.
Citation
Chao Ma, Hong Gu, Weimin Su, and Chuanzhong Li, "Bistatic Forward-Looking Synthetic Aperture Radar Imaging Based on the Modified Loffeld's Bistatic Formula," Progress In Electromagnetics Research M, Vol. 36, 117-129, 2014.
doi:10.2528/PIERM14031706
References

1. Ren, X. Z., J. T. Sun, and R. L. Yang, "A new three dimensional imaging algorithm for airborne forward-looking SAR," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 1, 153-157, 2011.
doi:10.1109/LGRS.2010.2055035

2. Nie, X., D. Y. Zhu, and Z. D. Zhu, "Application of synthetic bandwidth approach in SAR polar format algorithm using the deramp technique," Progress In Electromagnetics Research, Vol. 80, 447-460, 2008.
doi:10.2528/PIER07121409

3. Sun, J., S. Mao, G. Wang, and W. Hong, "Extended exact transfer function algorithm for bistatic SAR of translation invariant case," Progress In Electromagnetics Research, Vol. 99, 89-108, 2009.
doi:10.2528/PIER09091203

4. Balke, J., D. Matthes, and T. Mathy, "Illumination constraints for forward-looking radar receivers in bistatic SAR geometries," Proc. EuRAD, 25-28, Amsterdam, 2008.

5. Walterscheid, I., T. Espeter, J. Klare, A. R. Brenner, and J. H. G. Ender, "Potential and limitations of forward-looking bistatic SAR," Proc. IGARSS, 216-219, Honolulu, Jul. 2010.

6. Qiu, X., D. Hu, and C. Ding, "Some reflections on bistatic SAR of forward-looking con¯guration," IEEE Geosci. Remote Sens. Lett., Vol. 5, No. 4, 735-739, 2008.
doi:10.1109/LGRS.2008.2004506

7. Wu, J., J. Yang, Y. Huang, H. Yang, and H. Wang, "Bistatic forward-looking SAR: Theory and challenges," Proc. Radar, 1-4, Pasadena, 2009.

8. Wu, J., J. Yang, H. Yang, and Y. Huang, "Optimal geometry configuration of bistatic forward-looking SAR," Proc. ICASSP, 1117-1120, Taipei, 2009.

9. Shin, H. S. and J. T. Lim, "Omega-k algorithm for airborne forward-looking bistatic spotlight SAR imaging," IEEE Geosci. Remote Sens. Lett., Vol. 6, No. 2, 312-316, 2009.
doi:10.1109/LGRS.2008.2011924

10. Wu, J., J. Yang, Y. Huang, and H. Yang, "Focusing bistatic forward-looking SAR using chirp scaling algorithm," Proc. Radar, 1036-1039, Kansas city, 2011.

11. Yarman, C. E., B. Yazici, and M. Cheney, "Bistatic synthetic aperture radar imaging for arbitrary flight trajectories," IEEE Trans. Image Process., Vol. 17, No. 1, 84-93, 2008.
doi:10.1109/TIP.2007.911812

12. Bamler, R., F. Meyer, and W. Liebhart, "Processing of bistatic SAR data from quasi-stationary configurations," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, 3350-3358, 2007.
doi:10.1109/TGRS.2007.895436

13. Qiu, X., D. Hu, and C. Ding, "Focusing bistatic images use RDA based on hyperbolic approximating," Int. Conf. Radar, 1-4, Shanghai, 2006.

14. Geng, X., H. Yan, and Y. Wang, "A two-dimensional spectrum model for general bistatic SAR," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 8, 2216-2223, 2008.
doi:10.1109/TGRS.2008.918015

15. Neo, Y. L., F.Wong, and I. G. Cumming, "A two-dimensional spectrum for bistatic SAR processing using series reversion," IEEE Geosci. Remote Sens. Lett., Vol. 4, No. 1, 93-96, 2007.
doi:10.1109/LGRS.2006.885862

16. Xiong, T., M. Xing, Y. Wang, R. Guo, J. Sheng, and Z. Bao, "Using derivatives of an implicit function to obtain the stationary phase of the two-dimensional spectrum for bistatic SAR imaging," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 6, 1165-1169, 2011.
doi:10.1109/LGRS.2011.2159090

17. Loffeld, O., H. Nies, V. Peters, and S. Knedlik, "Models and useful relations for bistatic SAR processing," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 10, 2031-2038, 2004.
doi:10.1109/TGRS.2004.835295

18. Wang, R., O. Lo®eld, Q. Ui-Ann, H. Nies, A. M. Ortiz, and A. Samarah, "A bistatic point target reference spectrum for general bistatic SAR processing," IEEE Geosci. Remote Sens. Lett., Vol. 5, No. 3, 517-521, 2008.
doi:10.1109/LGRS.2008.923542

19. Wang, R., O. Loffeld, Y. L. Neo, H. Nies, and Z. Dai, "Extending Loffeld's bistatic formula for the general bistatic SAR configuration," IET Radar Sonar Navig., Vol. 4, No. 1, 74-84, 2010.
doi:10.1049/iet-rsn.2009.0099

20. Yang, K., F. He, and D. Liang, "A two-dimensional spectrum for general bistatic SAR processing," IEEE Geosci. Remote Sens. Lett., Vol. 7, No. 1, 108-112, 2010.
doi:10.1109/LGRS.2009.2028163

21. Liu, Z., J. Yang, and X. Zhang, "Nonlinear RCM compensation method for spaceborne/airborne forward-looking bistatic SAR," Proc. IGARSS, 4233-4236, Vancouver, 2011.

22. Wu, J., J. Yang, Y. Huang, Z. Liu, and H. Yang, "A new look at the point target reference spectrum for bistatic SAR," Progress In Electromagnetics Research,, Vol. 119, 363-379, 2011.
doi:10.2528/PIER11050704

23. Cardillo, G. P., "On the use of the gradient to determine bistatic SAR resolution," Proc. Antennas Propag. Soc. Int. Symp., 1032-1035, Dallas, 1990.

24. Walterscheid, I., A. R. Brenner, and J. H. G. Ender, "Results on bistatic synthetic aperture radar," Electron. Lett., Vol. 40, No. 19, 1224-1225, 2004.
doi:10.1049/el:20045466