Vol. 37
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-06-18
Scattering by a Tilted Strip Buried in a Lossy Half-Space at Oblique Incidence
By
Progress In Electromagnetics Research M, Vol. 37, 51-62, 2014
Abstract
The analysis of the scattering by a tilted perfectly conducting strip buried in a lossy half-space at oblique incidence is formulated as an electric field integral equation (EFIE) in the spectral domain and discretized by means of Galerkin's method with Chebyshev polynomials basis functions weighted with the edge behaviour of the surface current density on the strip. In this way, a convergence of exponential type is achieved. Moreover, a new analytical technique is introduced to rapidly evaluate the slowly converging integrals of the scattering matrix coefficients consisting of algebraic manipulations and a suitable integration procedure in the complex plane.
Citation
Mario Lucido , "Scattering by a Tilted Strip Buried in a Lossy Half-Space at Oblique Incidence," Progress In Electromagnetics Research M, Vol. 37, 51-62, 2014.
doi:10.2528/PIERM14041507
http://www.jpier.org/PIERM/pier.php?paper=14041507
References

1. Vico, M. D., F. Frezza, L. Pajewski, and G. Schettini, "Scattering by a finite set of perfectly conducting cylinders buried in a dielectric halfspace: A spectral-domain solution," IEEE Trans. Antennas Propag., Vol. 53, No. 2, 719-727, Feb. 2005.
doi:10.1109/TAP.2004.841315

2. Henin, B. H., A. Z. Elsherbeni, and M. H. Al Sharkawy, "Oblique incidence plane wave scattering from an array of circular dielectric cylinders," Progress In Electromagnetics Research, Vol. 68, 261-279, 2007.
doi:10.2528/PIER06083102

3. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a perfect electromagnetic conductor cylinder buried in a dielectric half-space," Progress In Electromagnetics Research, Vol. 78, 261-279, 2008.

4. Bernal, J., F. Medina, R. R. Boix, and M. Horno, "Fast full-wave analysis of multistrip transmission lines based on MPIE and complex image theory," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 3, 445-452, Mar. 2000.
doi:10.1109/22.826845

5. Rodrguez-Berral, R., F. Mesa, and F. Medina, "Enhanced implementation of the complex images method to study bound and leaky regimes in layered planar printed lines," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 2, 709-720, Feb. 2004.
doi:10.1109/TMTT.2003.822018

6. Aksun, M. I. and G. Dural, "Clarification of issues on the closed-form Green's functions in stratified media," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3644-3653, Nov. 2005.
doi:10.1109/TAP.2005.858571

7. Yuan, M., T. K. Sarkar, and M. Salazar-Palma, "A direct discrete complex image method from the closed-form Green's functions in multilayered media," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 3, 1025-1032, Mar. 2006.
doi:10.1109/TMTT.2005.864138

8. Kourkoulos, V. N. and A. C. Cangellaris, "Accurate approximation of Green's functions in planar strati¯ed media in terms of a ¯nite sum of spherical and cylindrical waves," IEEE Trans. Antennas Propag., Vol. 54, No. 5, 1568-1576, May 2006.
doi:10.1109/TAP.2006.874329

9. Boix, R. R., F. Mesa, and F. Medina, "Application of total least squares to the derivation of closed-form Green's functions for planar layered media," IEEE Trans. Microw. Theory Tech.,, Vol. 55, No. 2, 268-280, 2007.
doi:10.1109/TMTT.2006.889336

10. Polimeridis, G., T. V. Yioultsis, and T. D. Tsiboukis, "A robust method for the computation of Green's functions in stratified media," IEEE Trans. Antennas Propag., Vol. 55, No. 7, 1963-1969, 2007.
doi:10.1109/TAP.2007.900258

11. Alparslan, A., M. I. Aksun, and K. A. Michalski, "Closed-form Green's functions in planar layered media for all ranges and materials," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 3, 602-613, Mar. 2010.
doi:10.1109/TMTT.2010.2040354

12. Teo, S.-A., S.-T. Chew, and M.-S. Leong, "Error analysis of the discrete complex image method and pole extraction," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 2, 406-413, Feb. 2003.
doi:10.1109/TMTT.2002.807834

13. Niciforovic, R. G., A. G. Polimeridis, and J. R. Mosig, "Fast computation of Sommerfeld integral tails via direct integration based on double exponential-type quadrature formulas," IEEE Trans. Antennas Propag., Vol. 59, No. 2, 694-699, Feb. 2011.
doi:10.1109/TAP.2010.2096187

14. Dvorak, S. L. and E. F. Kuester, "Numerical computation of 2D sommerfeld integrals --- A novel asymptotic extraction technique," Journal of Computational Physics, Vol. 98, 217-230, 1992.
doi:10.1016/0021-9991(92)90139-P

15. Michalski, K. A., "Extrapolation methods for Sommerfeld integral tails," IEEE Trans. Antennas Propag., Vol. 46, No. 10, 1405-1418, 1998.
doi:10.1109/8.725271

16. Tsang, L., C.-C. Huang, and C. H. Chan, "Surface electric fields and impedance matrix elements of stratified media," IEEE Trans. Antennas Propag., Vol. 48, No. 10, 1533-1543, Oct. 2000.
doi:10.1109/8.899670

17. Mosig, J. R. and A. A Melcon, "Green's functions in lossy layered media: Integration along the imaginary axis and asymptotic behavior," IEEE Trans. Antennas Propag., Vol. 51, No. 12, 3200-3208, Dec. 2003.
doi:10.1109/TAP.2003.820946

18. Yuan, M. and T. K. Sarkar, "Computation of the Sommerfeld integral tails using the matrix pencil method," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1358-1362, 2006.
doi:10.1109/TAP.2006.872656

19. Wu, B. and L. Tsang, "Fast computation of layered medium Green's functions of multilayers and lossy media using fast all-modes method and numerical modified steepest descent path method," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 6, 1446-1454, Jun. 2008.
doi:10.1109/TMTT.2008.923901

20. Jansen, R. H., "The spectral domain approach for microwave integrated circuits," IEEE Trans. Microw. Theory Tech., Vol. 33, No. 10, 1043-1056, Oct. 1985.
doi:10.1109/TMTT.1985.1133168

21. Itoh, T., Numerical Techniques for Microwave and Millimeter-wave Passive Structures, Wiley, New York, 1989.

22. Davidson, B. and J. T. Aberle, "An introduction to spectral domain method-of-moments formulations," IEEE Antennas and Propagat. Mag., Vol. 46, No. 3, 11-19, Jun. 2004.
doi:10.1109/MAP.2004.1374083

23. Eswaran, K., "On the solutions of a class of dual integral equations occurring in diffraction problems," Proc. Roy. Soc. London, Ser. A, 399-427, 1990.
doi:10.1098/rspa.1990.0066

24. Veliev, I. and V. V. Veremey, "Numerical-analytical approach for the solution to thewave scattering by polygonal cylinders and flat strip structures," Analytical and Numerical Methods in Electromagnetic Wave Theory, M. Hashimoto, M. Idemen, and O. A. Tretyakov (eds.), Science House, Tokyo, 1993.

25. Park, S. and C. A. Balanis, "Dispersion characteristics of open microstrip lines using closed-form asymptotic extraction," IEEE Trans. Microw. Theory Tech., Vol. 45, 458-460, Mar. 1997.
doi:10.1109/22.563350

26. Park, S. and C. A. Balanis, "Closed-form asymptotic extraction method for coupled microstrip lines," IEEE Microw. Guid. Wave Lett., Vol. 7, No. 3, 84-86, Mar. 1997.
doi:10.1109/75.556040

27. Amari, S., R. Vahldieck, and J. Bornemann, "Using selective asymptotics to accelerate dispersion analysis of microstrip lines," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 7, 1024-1027, Jul. 1998.
doi:10.1109/22.701464

28. Tsalamengas, J. L., "Direct singular integral equation methods in scattering and propagation in strip- or slot-loaded structures," IEEE Trans. Antennas Propag., Vol. 46, No. 10, 1560-1570, Oct. 1998.
doi:10.1109/8.725290

29. Losada, V., R. R. Boix, and M. Horno, "Resonant modes of circular microstrip patches in multilayered substrates," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 4, 488-498, Apr. 1999.
doi:10.1109/22.754883

30. Tsalamengas, J. L., "Exponentially converging direct singular integral-equation methods in the analysis of microslot lines on layered substrates," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 10, 2031-2034, Oct. 1999.
doi:10.1109/22.795080

31. Tsalamengas, J. L., "Rapidly converging direct singular integral-equation techniques in the analysis of open microstrip lines on layered substrates," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 3, 555-559, Mar. 2001.
doi:10.1109/22.910563

32. Araneo, R., S. Celozzi, G. Panariello, F. Schettino, and L. Verolino, "Analysis of microstrip antennas by means of regularization via Neumann series," Review of Radio Science 1999-2002, 111-124, W. R. Stone, Ed., IEEE Press, Wiley Intersci., New York, 2002.

33. Losada, V., R. R. Boix, and F. Medina, "Fast and accurate algorithm for the short-pulse electromagnetic scattering from conducting circular plates buried inside a lossy dispersive half-space," IEEE Trans. Geosci. Remote Sensing, Vol. 41, No. 5, 988-997, May 2003.
doi:10.1109/TGRS.2003.810678

34. Lucido, M., G. Panariello, and F. Schettino, "Analysis of the electromagnetic scattering by perfectly conducting convex polygonal cylinders," IEEE Trans. Antennas Propag., Vol. 54, 1223-1231, Apr. 2006.
doi:10.1109/TAP.2006.872662

35. Lucido, M., G. Panariello, and F. Schettino, "Electromagnetic scattering by multiple perfectly conducting arbitrary polygonal cylinders," IEEE Trans. Antennas Propag., Vol. 56, No. 2, 425-436, Feb. 2008.
doi:10.1109/TAP.2007.915419

36. Lucido, M., G. Panariello, and F. Schettino, "TE scattering by arbitrarily connected conducting strips," IEEE Trans. Antennas Propag., Vol. 57, No. 7, 2212-2216, Jul. 2009.
doi:10.1109/TAP.2009.2021966

37. Lucido, M., G. Panariello, and F. Schettino, "Scattering by polygonal cross-section dielectric cylinders at oblique incidence," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 540-551, Feb. 2010.
doi:10.1109/TAP.2009.2038181

38. Coluccini, G., M. Lucido, and G. Panariello, "TM scattering by perfectly conducting polygonal cross-section cylinders: A new surface current density expansion retaining up to the second-order edge behavior," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 407-412, Jan. 2012.
doi:10.1109/TAP.2011.2167924

39. Lucido, M., "An analytical technique to fast evaluate mutual coupling integrals in spectral domain analysis of multilayered coplanar coupled striplines," Microw. Opt. Technol. Lett., Vol. 54, 1035-1039, Apr. 2012.
doi:10.1002/mop.26674

40. Lucido, M., "A new high-efficient spectral-domain analysis of single and multiple coupled microstrip lines in planarly layered media," EEE Trans. Microw. Theory Tech., Vol. 60, No. 7, 2025-2034, Jul. 2012.
doi:10.1109/TMTT.2012.2195025

41. Coluccini, G., M. Lucido, and G. Panariello, "Spectral domain analysis of open single and coupled microstrip lines with polygonal cross-section in bound and leaky regimes," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 2, 736-745, Feb. 2013.
doi:10.1109/TMTT.2012.2231424

42. Lucido, M., "An efficient evaluation of the self-contribution integrals in the spectral-domain analysis of multilayered striplines ," IEEE Antennas Wireless Propag. Lett., Vol. 12, 360-363, Mar. 2013.
doi:10.1109/LAWP.2013.2252139

43. Coluccini, G. and M. Lucido, "A new high efficient analysis of the scattering by a perfectly conducting rectangular plate," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2615-2622, May 2013.
doi:10.1109/TAP.2012.2237533

44. Lucido, M., "Complex resonances of a rectangular patch in a multilayered medium: A new accurate and efficient analytical technique," Progress In Electromagnetics Research, Vol. 145, 123-132, 2014.
doi:10.2528/PIER14020204

45. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.

46. Chew, W. C. and S. Y. Chen, "Response of a point source embedded in a layered medium," IEEE Antennas Wireless Propag. Lett., Vol. 2, 254-258, 2003.

47. Scott, R., The Spectral Domain Method in Electromagnetics, Artech House, Norwood, MA, 1989.

48. Abramowitz , M. and I.A. Stegun, Handbook of Mathematical Functions, Verlag Harri Deutsch, 1984.

49. Butler, M., X.-B. Xu, and A. W. Glisson, "Current induced on a conducting cylinder located near the planar interface between two semi-infinite half-spaces," IEEE Trans. Antennas Propag., Vol. 33, No. 6, 616-624, Jun. 1985.
doi:10.1109/TAP.1985.1143648

50. Xu, X.-B. and C. M. Butler, "Current induced by TE excitation on a conducting cylinder located near the planar interface between two semi-infinite half-spaces," IEEE Trans. Antennas Propag., Vol. 34, No. 7, 880-890, Jul. 1986.