Vol. 37
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-06-15
Synthesis of Thinned Array with Side Lobe Levels Reduction Using Improved Binary Invasive Weed Optimization
By
Progress In Electromagnetics Research M, Vol. 37, 21-30, 2014
Abstract
As a very powerful optimization algorithm, invasive weed optimization has been widely applied to continuous optimization problems in electromagnetic (EM) field. However, the optimization of a thinned array can be formulated as a discrete-variable optimization problem with solutions encoded as binary strings. Therefore, in this paper, an improved binary invasive weed optimization (IBIWO) is proposed to design a thinned array with minimum sidelobe levels. To evaluate the performance of the proposed algorithm, two examples have been presented and solved. Simulation results of the proposed thinned arrays obtained by IBIWO are compared with published results to verify the effectiveness of the proposed method.
Citation
Chao Liu, and Huaning Wu, "Synthesis of Thinned Array with Side Lobe Levels Reduction Using Improved Binary Invasive Weed Optimization," Progress In Electromagnetics Research M, Vol. 37, 21-30, 2014.
doi:10.2528/PIERM14042401
References

1. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 7, 993-999, 1994.
doi:10.1109/8.299602

2. Wang, X.-K., Y.-C. Jiao, Y. Liu, and Y. Y. Tan, "Synthesis of large planar thinned arrays using IWO-IFT algorithm," Progress In Electromagnetics Research, Vol. 136, 29-42, 2013.

3. Bucci, O. M., T. Isernia, and A. F. Morabito, "A deterministic approach to the synthesis of pencil beams through planar thinned arrays," Progress In Electromagnetics Research, Vol. 101, 217-230, 2010.
doi:10.2528/PIER10010104

4. Mailloux, R. J. and E. Cohen, "Statistically thinned arrays with quantized element weights," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 4, 436-447, 1991.
doi:10.1109/8.81455

5. Trucco, A., "Thinning and weighting of large planar arrays by simulated annealing," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 46, No. 2, 347-355, 1999.
doi:10.1109/58.753023

6. J., Ye, et al. "Side lobe reduction in thinned array synthesis using immune algorithm," Microwave and Millimeter Wave Technology, 1131-1133, 2008.

7. Quevedo-Teruel, O. S. and E. Rajo-Iglesias, "Ant colony optimization in thinned array synthesis with minimum sidelobe level," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 349-352, 2006.
doi:10.1109/LAWP.2006.880693

8. Zhang, L., et al. "Design of planar thinned arrays using a Boolean differential evolution algorithm," IET Microwaves, Antennas & Propagation, Vol. 4, No. 12, 2172-218, 2010.
doi:10.1049/iet-map.2009.0630

9. Wang, W., Q. Feng, and D. Liu, "Synthesis of thinned linear and planar antenna arrays using binary PSO algorithm," Progress In Electromagnetics Research, Vol. 127, 371-387, 2012.
doi:10.2528/PIER12020301

10. Oliveri, G., M. Donelli, and A. Massa, "Linear array thinning exploiting almost difference sets," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 12, 3800-3812, 2009.
doi:10.1109/TAP.2009.2027243

11. Rocca, P., "Large array thinning by means of deterministic binary sequences," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 334-337, 2011.
doi:10.1109/LAWP.2011.2142290

12. Mehrabian, A. R. and C. Lucas, "A novel numerical optimization algorithm inspired from weed colonization," Ecological Informatics, Vol. 1, No. 4, 355-366, 2006.
doi:10.1016/j.ecoinf.2006.07.003

13. Sedighy, S. H., et al. "Optimization of printed Yagi antenna using invasive weed optimization (IWO)," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1275-1278, 2010.
doi:10.1109/LAWP.2011.2105458

14. Karimkashi, S., A. A. Kishk, and D. Kajfez, "Antenna array optimization using dipole models for MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 8, 3112-3116, 2011.
doi:10.1109/TAP.2011.2158976

15. Foudazi, A. and A. R. Mallahzadeh, "Pattern synthesis for multi-feed reflector antennas using invasive weed optimisation," IET Microwaves, Antennas & Propagation, Vol. 6, No. 14, 1583-1589, 2012.
doi:10.1049/iet-map.2012.0045

16. Monavar, F. M., N. Komjani, and P. Mousavi, "Application of invasive weed optimization to design a broadband patch antenna with symmetric radiation pattern," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1369-1372, 2011.
doi:10.1109/LAWP.2011.2177801

17. Bai, Y.-Y., et al. "A hybrid IWO/PSO algorithm for pattern synthesis of conformal phased arrays," IEEE Transactions on Antennas and Propagation, Vol. 61, 2328-2332, 2013.
doi:10.1109/TAP.2012.2231936

18. Roy, G. G., et al. "Design of non-uniform circular antenna arrays using a modified invasive weed optimization algorithm," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, 110-118, 2011.
doi:10.1109/TAP.2010.2090477

19. Veenhuis, C., "Binary invasive weed optimization," 2010 Second World Congress on Nature and Biologically Inspired Computing (NaBIC), 449-454, 2010.
doi:10.1109/NABIC.2010.5716311

20. Lingnan, Z. S. W. Y., "Invasive weed optimization algorithm of discrete binary version," Journal of Huazhong University of Science and Technology (Natural Science Edition), Vol. 10, 15, 2011.