Vol. 52
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-07-14
A Broadband Technique for a Decoupling Network in a Compact Antenna Array in a MIMO System
By
Progress In Electromagnetics Research C, Vol. 52, 27-38, 2014
Abstract
Decoupling networks (DNs) have frequently been used to obtain high isolation performance between coupled antennas in multiple-input multiple-output (MIMO) systems due to their advantage of spatial efficiency, which is particularly important for mobile devices. However, conventional DNs suffer from narrowband limitations. In this paper, a broadband decoupling technique is proposed that broadens the isolation bandwidth using a parallel resonant point. A 1.95 GHz MIMO antenna system with 460 MHz of bandwidth (fractional bandwidth, FBW = 23.6%) is designed and measured using the scattering parameters. The isolation is found to be better than -15 dB, while the reflection coefficient is better than -6 dB. Furthermore, the antenna efficiency and envelope correlation coefficient (ECC) are evaluated in a reverberation chamber.
Citation
Jung Hoon Ko Jung-Hoon Han Noh-Hoon Myung , "A Broadband Technique for a Decoupling Network in a Compact Antenna Array in a MIMO System," Progress In Electromagnetics Research C, Vol. 52, 27-38, 2014.
doi:10.2528/PIERC14042901
http://www.jpier.org/PIERC/pier.php?paper=14042901
References

1. Krairiksh, M., P. Keowsawat, C. Phongcharoenpanich, and S. Kosulvit, "Two-probed excited circular ring antenna for MIMO application," Progress In Electromagnetics Research, Vol. 97, 417-431, 2009.
doi:10.2528/PIER09091607

2. Yu, X. H., L.Wang, H.-G.Wang, X.Wu, and Y.-H. Shang, "A novel multiport matching method for maximum capacity of an indoor MIMO system," Progress In Electromagnetics Research,, Vol. 130, 67-84, 2012.
doi:10.2528/PIER12040603

3. Sharawi, M. S., A. B. Numan, and D. N. Aloi, "Isolation improvement in a dual-band dual-element MIMO antenna system using capacitively loaded loops," Progress In Electromagnetics Research, Vol. 134, 247-266, 2013.
doi:10.2528/PIER12090610

4. Tse, D. and P. Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, New York, 2005.
doi:10.1017/CBO9780511807213

5. Lee, J.-H. and C.-C. Cheng, "Spatial correlation of multiple antenna arrays in wireless communication systems," Progress In Electromagnetics Research, Vol. 132, 347-368, 2012.
doi:10.2528/PIER12080604

6. Yang, F., "Microstrip antennas integrated with electromagnetic band-gap structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

7. Islam, M. T. and M. S. Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetics Research, Vol. 137, 425-438, 2013.
doi:10.2528/PIER12121205

8. Chiu, C. Y. and C. H. Cheng, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1732-1738, 2007.
doi:10.1109/TAP.2007.898618

9. Chou, H. -T., H.-C. Cheng, H.-T. Hsu, and L.-R. Kuo, "Investigations of isolation improvement techniques for multiple input multiple output (MIMO) WLAN portable terminal applications," Progress In Electromagnetics Research, Vol. 85, 349-366, 2008.
doi:10.2528/PIER08090905

10. Li, J. F. and Q. X. Chu, "A compact dual-band MIMO antenna of mobile phone," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1577-1586, 2011.
doi:10.1163/156939311797164800

11. Xiang, Z., X. Quan, and R. Li, "A dual-broadband MIMO antenna system for GSM/ UMTS/LTE and WLAN handsets," IEEE Antennas Wireless Propag. Lett., Vol. 11, 551-554, 2012.
doi:10.1109/LAWP.2012.2199459

12. Diallo, A. and C. Luxey, "Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS 1800 and UMTS bands," IEEE Trans. Antennas Propag., Vol. 54, No. 11, 3063-3074, 2006.
doi:10.1109/TAP.2006.883981

13. Park, G., M. Kim, T. Yang, J. Byun, and A. S. Kim, "The compact quad-band mobile handset antenna for the LTE 700 MIMO application," APSURSI'09, 1-4, Jun. 1-5, 2009.

14. Chung, J. Y., T. Yang, and J. Y. Lee, "Low correlation MIMO antennas with negative group delay," Progress In Electromagnetics Research C, Vol. 22, 151-163, 2011.
doi:10.2528/PIERC11051007

15. Vongsack, S., C. Phongcharoenpanich, S. Kosulvit, K. Hamamoto, and T. Wakabayash, "Unidirectional antenna using two-probe excited circular ring above square reflector for polarization diversity with high isolation," Progress In Electromagnetics Research C, Vol. 133, 159-176, 2013.
doi:10.2528/PIER12080110

16. Xu, H.-X., G.-M. Wang, and M.-Q. Qi, "A miniaturized triple-band metamaterial antenna with radiation pattern selectivity and polarization diversity," Progress In Electromagnetics Research C, Vol. 137, 275-292, 2013.
doi:10.2528/PIER12081008

17. Li, W., W. Lin, and G. Yang, "A compact MIMO antenna system design with low correlation from 1710MHz to 2690 MHz," Progress In Electromagnetics Research C, Vol. 144, 59-65, 2014.
doi:10.2528/PIER13111305

18. Coetzee, J. C. and Y. Yantao, "Port decoupling for small antenna arrays by means of an eigenmode feed network," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1587-1593, 2008.
doi:10.1109/TAP.2008.923301

19. Volmer, C., M. Sengul, J. Weber, R. Stephan, and M. A. Hein, "Broadband decoupling and matching of a superdirective two-port antenna array," IEEE Antennas Wireless Propag. Lett., Vol. 7, 613-616, 2008.
doi:10.1109/LAWP.2008.2006767

20. Mahmood, F., J.-R. Kazim, M. Karlsson, S. Gong, and Z. Ying, "Decoupling techniques of compact and broadband MIMO antennas for handheld devices," EuCAP 2012 , 1-5, Mar. 26-30, 2012.

21. Bhatti, R. A. and S. O. Park, "Compact antenna array with port decoupling for LTE-standardized mobile phones," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1430-1433, 2009.
doi:10.1109/LAWP.2010.2040677

22. Gong, Q., Y.-C. Jiao, and S.-X. Gong, "Compact MIMO antennas using a ring hybrid for WLAN applications," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 431-441, 2011.
doi:10.1163/156939311794362939

23. Chaloupka, H. J. and X. Wang, "Novel approach for diversity and MIMO antennas at small mobile platforms," PIMRC 2004, 637-642, Sep. 5-8, 2004.

24. Dossche, S., S. Blanch, and J. Romeu, "Optimum antenna matching to minimize signal correlation on a two port antenna diversity system," Electron. Lett., Vol. 40, No. 19, 1164-1165, 2004.
doi:10.1049/el:20045737

25. Chen, S. C. and S. J. Chung, "A decoupling technique for increasing the port isolation between two strongly coupled antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3650-3658, 2008.
doi:10.1109/TAP.2008.2005469

26. Cui, S., S.-X. Gong, Y. Liu, W. Jiang, and Y. Guan, "Compact and low coupled monopole antennas for MIMO system applications," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 703-712, 2011.
doi:10.1163/156939311794827221

27. Pozar, D. M., Microwave Engineering, 3rd Ed., John Wiley, New York, 2005.

28. Balanis, C. A., Antenna Theory, 3rd Ed., John Wiley, New York, 2005.

29. An, H., Bart, K. J. C. Nauwelaers, and A. R. Van de Capelle, "Broadband microstrip antenna design with the simplified real frequency technique," IEEE Trans. Antennas Propag., Vol. 42, No. 2, 129-136, 1994.
doi:10.1109/8.277206

30. Chen, X., P. Kildal, J. Carlsson, and J. Yang, "Comparison of ergodic capacities from wideband MIMO antenna measurements in reverberation chamber and anechoic chamber," IEEE Antennas Wireless Propag. Lett., Vol. 10, 446-449, 2011.
doi:10.1109/LAWP.2011.2152360