Vol. 53
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-09-29
Target Recognition with Radar Images via Parameterized Dictionary Sets
By
Progress In Electromagnetics Research C, Vol. 53, 165-175, 2014
Abstract
Target recognition through the processing of high-resolution radar images has been an active research area in past decades. In this paper, dictionary sets parameterized by the two-dimensional (2-D) location parameters of main high-energy scatterers are considered to recognize the candidate targets. For this purpose, the scatterer extraction and orientation estimation of radar image are firstly provided in this paper. Furthermore, the recognition method based on the parameterized dictionary sets is subsequently proposed. Different from the existed recognition methods, only the sampled images at the 2-D location parameters of main high-energy scatterers are used in the proposed method. Consequently, the noise or clutter outside the sampling locations can be filtered, which results in more robust performance. Moreover, the 2-D location parameters are proportional to the geometrical structure, and the proposed method is adaptive to the scale variation of the target images. Simulated results are provided to demonstrate the proposed method.
Citation
Dang-Wei Wang Wen-Kun Gu Shang Peng Xiao-Yan Ma , "Target Recognition with Radar Images via Parameterized Dictionary Sets," Progress In Electromagnetics Research C, Vol. 53, 165-175, 2014.
doi:10.2528/PIERC14051804
http://www.jpier.org/PIERC/pier.php?paper=14051804
References

1. Zeng, B., M. D. Xing, and T. Wang, Radar Imaging Technique, Publish House of Electronics Industry, China, 2005.

2. Son, J. S., G. Thomas, and B. C. Flores, Range-Doppler Radar Imaging and Motion Compensation, Artech House, USA, 2000.

3. Özdemir, C., Inverse Synthetic Aperture Radar Imaging with MATLAB, John Wiley & Sons, Inc., 2012.
doi:10.1002/9781118178072

4. Emanuel, R., Q. Andre, and T. Felix, "Supervised self-organizing classification of superresolution ISAR images: An anechoic chamber experiment," EURASIP Journal on Applied Signal Processing, Vol. 2006, 1-14, Jan. 2006.

5. Kim, K. T., D. K. Seo, and H. T. Kim, "Efficient classification of ISAR images," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 5, 1611-1621, May 2005.
doi:10.1109/TAP.2005.846780

6. Toumi, A. and A. Khenchaf, "Log-polar and polar image for recognition targets," 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1609-1612, 2010.
doi:10.1109/IGARSS.2010.5652527

7. Kumar, B. S., B. Prabhakar, K. Suryanarayana, et al., "Target recognition using harmonic wavelet based ISAR imaging," Journal of Applied Signal Processing, Special Issue on ISAR, Vol. 2006, 1-12, Jan. 2006.

8. Patil, P. M. and J. V. Kulkarni, "Rotation and intensity invariant shoeprint matching using Gabor transform with application to forensic science," Pattern Recognition, Vol. 42, 1308-1317, 2009.
doi:10.1016/j.patcog.2008.11.008

9. Tang, N., X.-Z. Gao, and X. Li, "Target classification of ISAR images based on feature space optimization of local non-negative matrix factorization," IET Signal Processing, Vol. 6, No. 5, 494-502, 2012.
doi:10.1049/iet-spr.2011.0286

10. Liu, M., Y. Wu, P. Zhang, et al., "SAR target configuration recognition using locality preserving property and Gaussian mixture distribution," IEEE Geosci. Remote Sens. Letters, Vol. 10, No. 2, 268-272, Mar. 2013.
doi:10.1109/LGRS.2012.2198610

11. Zhou, J. X., Z. G. Shi, X. Cheng, and Q. Fu, "Automatic target recognition of SAR images based on global scattering center model," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 10, 3713-3729, Oct. 2011.

12. Martorella, M., E. Giusti, and L. Demi, "Target recognition by means of polarimetric ISAR images," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 1, 225-239, Jan. 2011.
doi:10.1109/TAES.2011.5705672

13. Giusti, E., M. Martorella, and A. Capria, "Polarimetrically-persistent-scatterer-based automatic target recognition," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 11, 4588-4599, Nov. 2011.
doi:10.1109/TGRS.2011.2164804

14. Rao, W., G. Li, X.Wang, et al., "Adaptive sparse recovery by parametric weighted L1 minimization for ISAR imaging of uniformly rotating targets," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 6, No. 2, 942-952, Apr. 2013.
doi:10.1109/JSTARS.2012.2215915

15. Teague, M. R., "Image analysis via the general theory of moments," Journal of the Optical Society of America, Vol. 70, No. 8, 920-930, Aug. 1980.
doi:10.1364/JOSA.70.000920

16. Wang, D.-W., G. Chen, N. Wu, et al., "Efficient target identification for MIMO high-resolution imaging radar via plane-rotation-invariant feature," IEEE International Symposium on Signal Processing and IT, 350-354, Ajman, UAE, 2009.

17. Bhalla, R., H. Ling, J. Moore, et al., "3D scattering center representation of complex targets using the shooting and bouncing ray technique: A review," IEEE Antennas Propag. Mag., Vol. 40, No. 5, 30-39, Oct. 1998.
doi:10.1109/74.735963

18. Žuni, J., L. Kopanjab, and J. E. Fieldsenda, "Notes on shape orientation where the standard method does not work," Pattern Recognition, Vol. 39, 856-865, 2006.
doi:10.1016/j.patcog.2005.11.010

19. Gradshteyn, I. S. and I. M. Ryzhik, Tables of Integrals, Series, and Products, 6th Ed., Academic Press, San Diego, CA, 2000.

20. Wang, D. W., X. Y. Ma, and Y. Su, "Radar target recognition using a likelihood ratio test and matching pursuit technique," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 153, No. 6, 509-515, Dec. 2006.
doi:10.1049/ip-rsn:20050147

21. Bharadwaj, P. K., P. Runkle, and L. Carin, "Target recognition with wave-based matched pursuits and hidden Markov models," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 10, 1543-1554, Oct. 1999.
doi:10.1109/8.805897

22. McClure, M. R. and L. Carin, "Matching pursuits with a wave-based dictionary," IEEE Transactions on Signal Processing, Vol. 45, No. 12, 2912-2927, Dec. 1997.
doi:10.1109/78.650250