1. Gangwar, A. and S. C. Gupta, "Metamaterials --- A new era of artificial materials with extraordinary properties," International Journal of Engineering Research and Management Technology, Vol. 1, No. 2, 76-84, 2014. Google Scholar
2. Chen, H. S., L. Huang, X. X. Cheng, and H.Wang, "Magnetic properties of metamaterial composed of closed rings," Progress In Electromagnetics Research, Vol. 115, 317-326, 2011. Google Scholar
3. Han, N. R., Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, "Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates," Optics Express, Vol. 19, No. 8, 6990-6998, 2011.
doi:10.1364/OE.19.006990 Google Scholar
4. Kim, D.-S., D.-H. Kim, S. Hwang, and J.-H. Jang, "Broadband terahertz absorber realized by self assembled multi-layer glass spheres," Optics Express, Vol. 20, No. 12, 13566-13572, 2012.
doi:10.1364/OE.20.013566 Google Scholar
5. Majid, H. A., M. K. A. Rahim, and T. Masri, "Left-handed metamaterial design for microstrip antenna application," 2008 IEEE International RF and Microwave Conference Proceeding, 218-221, 2008.
doi:10.1109/RFM.2008.4897426 Google Scholar
6. Garg, B. and D. Saleem, "Experimental verification of double negative property of LHM with signiˉcant improvement in microstrip transceiver parameters in S band," International Journal of Engineering Practical Research (IJEPR), Vol. 2, No. 2, 64-70, 2013. Google Scholar
7. Zarifi, D., S. E. Hosseininejad, and A. Abdolali, "Design of dual-band double negative metamaterials," Iranian Journal of Electrical & Electronic Engineering, Vol. 10, No. 2, 75-80, 2014. Google Scholar
8. Shi, Y. and C.-H. Liang, "The analysis of double-negative materials using multi-domain pseudospectral time-domain algorithm," Progress In Electromagnetics Research, Vol. 51, 153-165, 2005.
doi:10.2528/PIER04092301 Google Scholar
9. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628 Google Scholar
10. Huang, Y., G. wen, and W. Zhu, "Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber," Optics Express, Vol. 22, No. 13, 16408-16417, 2014.
doi:10.1364/OE.22.016408 Google Scholar
11. Liu, X. L., L. P. Wang, and Z. M. Zhang, "Wideband tunable omnidirectional infrared based on doped-silicon nanowire arrays," Journal of Heat Transfer, Vol. 135, No. 6, 061602, 2013.
doi:10.1115/1.4023578 Google Scholar
12. Chang, Y. C., C. M. Wang, M. N. Abbas, M. H. Shih, and D. P. Tsai, "T-shaped plasmonic array as a narrow band thermal emitter or biosensor," Optics Express, Vol. 17, No. 16, 13526-13531, 2009.
doi:10.1364/OE.17.013526 Google Scholar
13. Zhao, J., Y. Feng, B. Zhu, and T. Jiang, "Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms," Optics Express, Vol. 16, No. 22, 18057-18066, 2008.
doi:10.1364/OE.16.018057 Google Scholar
14. Che Seman, F. and R. Cahill, "Frequency selective surfaces based planar microwave absorbers," PIERS Proceedings, 906-909, Kuala Lumpur, Malaysia, Mar. 27-30, 2012. Google Scholar
15. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011. Google Scholar
16. Li, M.-H., H.-L. Yang, and X.-W. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409 Google Scholar
17. Wang, J. F., S. B. Qu, Z. T. Fu, H. Ma, Y. M. Yang, and X. Wu, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetic and electric resonators," Progress In Electromagnetics Research, Vol. 7, 15-24, 2009. Google Scholar
18. Park, J. W., P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. G. Choi, L. Y. Chen, and Y. P. Lee, "Multi-band metamaterial absorber based on the arrangement of donut-type resonators," Optics Express, Vol. 21, No. 8, 9691-9702, 2013.
doi:10.1364/OE.21.009691 Google Scholar
19. Cheng, Y., Y. Nie, and R. Gong, "Design of a wide-band metamaterial absorber based on fractal frequency selective surface and resistive films," Phys. Scr., Vol. 88, 045703, 2013.
doi:10.1088/0031-8949/88/04/045703 Google Scholar
20. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
21. Dincer, F., O. Akgol, M. Karaaslan, E. Unal, and C. Sabah, "Polarization independent perfect metamaterial absorbers for solar cell application in the microwaves, infrared, and visible regime," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 953-962, 2009.
doi:10.1163/156939309788355289 Google Scholar
22. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express, Vol. 16, 7181-7188, 2008.
doi:10.1364/OE.16.007181 Google Scholar
23. Wang, J. Q., C. Z. Fan, P. Ding, J. N. He, Y. G. Cheng, W. Q. Hu, G. W. Cai, E. J. Liang, and Q. Z. Xue, "Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency," Optics Express, Vol. 20, 14871-14878, 2012.
doi:10.1364/OE.20.014871 Google Scholar
24. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekehamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle incidence terahertz metamaterial absorber: Design, fabrication and characterization," Phys. Rev. B, Vol. 78, No. 7, 241103, 2008.
doi:10.1103/PhysRevB.78.241103 Google Scholar
25. Dincer, F., M. Karaaslan, E. Unal, K. Delihacioglu, and C. Sabah, "Design of polarization and incident angle insensitive dual-band metamaterial absorber based on isotropic resonators," Progress In Electromagnetics Research, Vol. 144, 123-132, 2014.
doi:10.2528/PIER13111403 Google Scholar
26. Sabah, C., F. Dincer, M. Karaaslan, E. Unal, and O. Akgol, "Polarization-insensitive FSS based perfect metamaterial absorbers in GHz and THz frequencies," Radio Science, Vol. 49, 306-314, 2014.
doi:10.1002/2013RS005340 Google Scholar
27. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011. Google Scholar
28. Sun, J., L. Liu, G. Dong, and J. Zhou, "An extremely broad band metamaterial absorber based on destructive interference," Optics Express, Vol. 19, No. 22, 21155-21162, 2011.
doi:10.1364/OE.19.021155 Google Scholar
29. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express,, Vol. 16, No. 10, 7181-7188, 2008.
doi:10.1364/OE.16.007181 Google Scholar