Vol. 39
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-10-06
Triple Band Circular Ring-Shaped Metamaterial Absorber for X-Band Applications
By
Progress In Electromagnetics Research M, Vol. 39, 65-75, 2014
Abstract
This paper presents the design, fabrication, and measurement of triple band metamaterial absorber at 8 GHz, 10 GHz and 12 GHz which are in the X-band frequency range. The unit cell of the metamaterial consists of three concentric copper rings at different radii, printed on 0.8 mm thick FR4 substrate in order to obtain triple resonant frequencies. The highly symmetrical ring structure in nature makes this absorber insensitive to any polarization state of incident electromagnetic (EM) waves for normal incident waves. The proposed structure is capable to operate at wide variations angle of incident wave. The simulated result shows that the triple-band metamaterial absorber achieves high absorbance for normal incident electromagnetic waves of 97.33%, 91.84% and 90.08% at 8 GHz, 10 GHz and 12 GHz respectively, when subjected to normal incident electromagnetic. With metamaterial absorber maintaining 50% of absorbance value, the corresponding full width half maximum (FWHM) are 5.61%, 2.90% and 2.33%. The operating angles in which the metamaterial structure can maintain 50% absorbance at TE mode and TM mode are 670 and 640 respectively. The experimental result verifies that the absorber is well performed at three different resonant frequencies with absorbance greater than 80%.
Citation
Osman Ayop, Mohamad Kamal Abd Rahim, Noor Asniza Murad, Noor Asmawati Binti Samsuri, and Raimi Dewan, "Triple Band Circular Ring-Shaped Metamaterial Absorber for X-Band Applications," Progress In Electromagnetics Research M, Vol. 39, 65-75, 2014.
doi:10.2528/PIERM14052402
References

1. Gangwar, A. and S. C. Gupta, "Metamaterials --- A new era of artificial materials with extraordinary properties," International Journal of Engineering Research and Management Technology, Vol. 1, No. 2, 76-84, 2014.        Google Scholar

2. Chen, H. S., L. Huang, X. X. Cheng, and H.Wang, "Magnetic properties of metamaterial composed of closed rings," Progress In Electromagnetics Research, Vol. 115, 317-326, 2011.        Google Scholar

3. Han, N. R., Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, "Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates," Optics Express, Vol. 19, No. 8, 6990-6998, 2011.
doi:10.1364/OE.19.006990        Google Scholar

4. Kim, D.-S., D.-H. Kim, S. Hwang, and J.-H. Jang, "Broadband terahertz absorber realized by self assembled multi-layer glass spheres," Optics Express, Vol. 20, No. 12, 13566-13572, 2012.
doi:10.1364/OE.20.013566        Google Scholar

5. Majid, H. A., M. K. A. Rahim, and T. Masri, "Left-handed metamaterial design for microstrip antenna application," 2008 IEEE International RF and Microwave Conference Proceeding, 218-221, 2008.
doi:10.1109/RFM.2008.4897426        Google Scholar

6. Garg, B. and D. Saleem, "Experimental verification of double negative property of LHM with signiˉcant improvement in microstrip transceiver parameters in S band," International Journal of Engineering Practical Research (IJEPR), Vol. 2, No. 2, 64-70, 2013.        Google Scholar

7. Zarifi, D., S. E. Hosseininejad, and A. Abdolali, "Design of dual-band double negative metamaterials," Iranian Journal of Electrical & Electronic Engineering, Vol. 10, No. 2, 75-80, 2014.        Google Scholar

8. Shi, Y. and C.-H. Liang, "The analysis of double-negative materials using multi-domain pseudospectral time-domain algorithm," Progress In Electromagnetics Research, Vol. 51, 153-165, 2005.
doi:10.2528/PIER04092301        Google Scholar

9. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628        Google Scholar

10. Huang, Y., G. wen, and W. Zhu, "Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber," Optics Express, Vol. 22, No. 13, 16408-16417, 2014.
doi:10.1364/OE.22.016408        Google Scholar

11. Liu, X. L., L. P. Wang, and Z. M. Zhang, "Wideband tunable omnidirectional infrared based on doped-silicon nanowire arrays," Journal of Heat Transfer, Vol. 135, No. 6, 061602, 2013.
doi:10.1115/1.4023578        Google Scholar

12. Chang, Y. C., C. M. Wang, M. N. Abbas, M. H. Shih, and D. P. Tsai, "T-shaped plasmonic array as a narrow band thermal emitter or biosensor," Optics Express, Vol. 17, No. 16, 13526-13531, 2009.
doi:10.1364/OE.17.013526        Google Scholar

13. Zhao, J., Y. Feng, B. Zhu, and T. Jiang, "Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms," Optics Express, Vol. 16, No. 22, 18057-18066, 2008.
doi:10.1364/OE.16.018057        Google Scholar

14. Che Seman, F. and R. Cahill, "Frequency selective surfaces based planar microwave absorbers," PIERS Proceedings, 906-909, Kuala Lumpur, Malaysia, Mar. 27-30, 2012.        Google Scholar

15. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.        Google Scholar

16. Li, M.-H., H.-L. Yang, and X.-W. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409        Google Scholar

17. Wang, J. F., S. B. Qu, Z. T. Fu, H. Ma, Y. M. Yang, and X. Wu, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetic and electric resonators," Progress In Electromagnetics Research, Vol. 7, 15-24, 2009.        Google Scholar

18. Park, J. W., P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. G. Choi, L. Y. Chen, and Y. P. Lee, "Multi-band metamaterial absorber based on the arrangement of donut-type resonators," Optics Express, Vol. 21, No. 8, 9691-9702, 2013.
doi:10.1364/OE.21.009691        Google Scholar

19. Cheng, Y., Y. Nie, and R. Gong, "Design of a wide-band metamaterial absorber based on fractal frequency selective surface and resistive films," Phys. Scr., Vol. 88, 045703, 2013.
doi:10.1088/0031-8949/88/04/045703        Google Scholar

20. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402        Google Scholar

21. Dincer, F., O. Akgol, M. Karaaslan, E. Unal, and C. Sabah, "Polarization independent perfect metamaterial absorbers for solar cell application in the microwaves, infrared, and visible regime," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 953-962, 2009.
doi:10.1163/156939309788355289        Google Scholar

22. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express, Vol. 16, 7181-7188, 2008.
doi:10.1364/OE.16.007181        Google Scholar

23. Wang, J. Q., C. Z. Fan, P. Ding, J. N. He, Y. G. Cheng, W. Q. Hu, G. W. Cai, E. J. Liang, and Q. Z. Xue, "Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency," Optics Express, Vol. 20, 14871-14878, 2012.
doi:10.1364/OE.20.014871        Google Scholar

24. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekehamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle incidence terahertz metamaterial absorber: Design, fabrication and characterization," Phys. Rev. B, Vol. 78, No. 7, 241103, 2008.
doi:10.1103/PhysRevB.78.241103        Google Scholar

25. Dincer, F., M. Karaaslan, E. Unal, K. Delihacioglu, and C. Sabah, "Design of polarization and incident angle insensitive dual-band metamaterial absorber based on isotropic resonators," Progress In Electromagnetics Research, Vol. 144, 123-132, 2014.
doi:10.2528/PIER13111403        Google Scholar

26. Sabah, C., F. Dincer, M. Karaaslan, E. Unal, and O. Akgol, "Polarization-insensitive FSS based perfect metamaterial absorbers in GHz and THz frequencies," Radio Science, Vol. 49, 306-314, 2014.
doi:10.1002/2013RS005340        Google Scholar

27. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.        Google Scholar

28. Sun, J., L. Liu, G. Dong, and J. Zhou, "An extremely broad band metamaterial absorber based on destructive interference," Optics Express, Vol. 19, No. 22, 21155-21162, 2011.
doi:10.1364/OE.19.021155        Google Scholar

29. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express,, Vol. 16, No. 10, 7181-7188, 2008.
doi:10.1364/OE.16.007181        Google Scholar