Vol. 53
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-09-22
Compact EBG Structures for Reduction of Mutual Coupling in Patch Antenna MIMO Arrays
By
Progress In Electromagnetics Research C, Vol. 53, 145-154, 2014
Abstract
Electromagnetic band gap (EBG) structures are usually realized by periodic arrangement of dielectric materials. These periodic structures can help in the reduction of mutual coupling in array antennas. In this paper a new arrangement of EBG structures is presented for reducing mutual coupling between patch antenna MIMO arrays. The patch antennas operate at 5.35 GHz which is defined for wireless application. Here 2×5 EBG structures are used to reduce mutual coupling more than 20 dB. The total size of the antenna is 36 mm×68 mm×1.6 mm. So it is more compact in than pervious research. Experimental results of return loss and antenna pattern have been presented for 5.4 GHz and compared with HFSS simulation results. Also the EBG structures have been designed with numerical modeling and dispersion diagram. New EBG model is compared with conventional EBG model, and equivalent circuit model is given for new structure.
Citation
Mohammad Naser-Moghadasi, Rahele Ahmadian, Zahra Mansouri, Ferdows B. Zarrabi, and Maryam Rahimi, "Compact EBG Structures for Reduction of Mutual Coupling in Patch Antenna MIMO Arrays," Progress In Electromagnetics Research C, Vol. 53, 145-154, 2014.
doi:10.2528/PIERC14081603
References

1. Yu, X., L. Wang, H.-G. Wang, X. Wu, and Y.-H. Shang, "A novel multiport matching method for maximum capacity of an indoor MIMO system," Progress In Electromagnetics Research, Vol. 130, 67-84, 2012.
doi:10.2528/PIER12040603

2. Rahimi, M., F. B. Zarrabi, R. Ahmadian, Z. Mansouri, and A. Keshtkar, "Miniaturization of antenna for wireless application with difference metamaterial structures," Progress In Electromagnetics Research, Vol. 145, 19-29, 2014.
doi:10.2528/PIER13120902

3. Segovia-Vargas, D., F. J. Herraiz-Martinez, E. Ugarte-Munoz, L. E. Garcia-Munoz, and V. Gonzalez-Posadas, "Quad-frequency linearly-polarized and dual-frequency circularly-polarized microstrip patch antennas with CRLH loading," Progress In Electromagnetics Research, Vol. 133, 91-115, 2013.
doi:10.2528/PIER12072413

4. Chaimool, S., C. Rakluea, and P. Akkaraekthalin, "Compact wideband microstrip thinned array antenna using EBG superstrate," AEU — Int. J. Electron. Commun., Vol. 66, 49-53, 2012.
doi:10.1016/j.aeue.2011.04.015

5. Hwang, R.-B., H.-W. Liu, and C.-Y. Chin, "A metamaterial-based E-plane horn antenna," Progress In Electromagnetics Research, Vol. 93, 275-289, 2009.
doi:10.2528/PIER09050606

6. Fan, Y. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2691-2703, 2003.
doi:10.1109/TAP.2003.817559

7. Zhao, L., D. Yang, H. Tian, Y. Ji, and K. Xu, "A pole and AMC point matching method for the synthesis of HSF-UC-EBG structure with simultaneous AMC and EBG properties," Progress In Electromagnetics Research, Vol. 133, 137-157, 2013.
doi:10.2528/PIER12062406

8. Ahmadian, R., S. Sharma, M. Rahimi, and F. B. Zarrabi, "Investigation of EBG array performance on decreasing the mutual coupling," 2014 Fourth International Conference on Advanced Computing & Communication Technologies (ACCT), 359-362, IEEE, 2014.
doi:10.1109/ACCT.2014.68

9. Yuan, T., H. Hafdallah-Ouslimani, A. C. Priou, G. Lacotte, and G. Collignon, "Dual-layer EBG structures for low-profile ‘bent’ monopole antennas," Progress In Electromagnetics Research B, Vol. 47, 315-337, 2013.
doi:10.2528/PIERB12110502

10. Mirhadi, S. and M. Kamyab, "Mutual coupling reduction of microstrip antenna array using double negative substrate," AEU — Int. J. Electron. Commun., Vol. 64, 469-474, 2010.
doi:10.1016/j.aeue.2009.01.009

11. Xiao, S., M.-C. Tang, Y.-Y. Bai, S. Gao, and B.-Z. Wang, "Mutual coupling suppression in microstrip array using defected ground structure," IET Microwaves, Antennas & Propagation, Vol. 5, No. 12, 1488-1494, 2011.
doi:10.1049/iet-map.2010.0154

12. Zheng, Q.-R., Y.-Q. Fu, and N.-C. Yuan, "A novel compact spiral electromagnetic band-gap (EBG) structure," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1656-1660, 2008.
doi:10.1109/TAP.2008.923305

13. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175

14. Yang, X. M., X. G. Liu, X. Y. Zhou, and T. J. Cui, "Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 389-391, 2012.
doi:10.1109/LAWP.2012.2193111

15. Salehi, M. and A. Tavakoli, "A novel low mutual coupling microstrip antenna array design using defected ground structure," AEU — Int. J. Electron. Commun., Vol. 60, 718-723, 2006.
doi:10.1016/j.aeue.2005.12.009

16. Xie, H.-H., Y.-C. Jiao, L.-N. Chen, and F.-S. Zhang, "An effective analysis method for EBG reducing patch antenna coupling," Progress In Electromagnetics Research Letters, Vol. 21, 187-193, 2011.

17. Moghadasi, S. M., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
doi:10.2528/PIER08050101

18. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," Antennas and Wireless Propagation Letters, Vol. 9, 57-59, 2010.
doi:10.1109/LAWP.2010.2042565

19. Islam, M. T. and M. S. Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetics Research, Vol. 137, 425-438, 2013.
doi:10.2528/PIER12121205

20. Sharawi, M. S., A. B. Numan, and D. N. Aloi, "Isolation improvement in a dual-band dual-element MIMO antenna system using capacitively loaded loops," Progress In Electromagnetics Research, Vol. 134, 247-266, 2013.
doi:10.2528/PIER12090610

21. Mohajer-Iravani, B., S. Shahparnia, and O. M. Ramahi, "Coupling reduction in enclosures and cavities using electromagnetic band gap structures," IEEE Transactions Electromagnetic Compatibility, Vol. 48, 292-303, 2006.
doi:10.1109/TEMC.2006.874666

22. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions Antennas and Propagation, Vol. 51, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

23. Mohajer-Iravani, B. and O. M. Ramahi, "Wideband circuit model for planar EBG structures," IEEE Transactions Advanced Packaging, Vol. 33, 169-179, 2010.
doi:10.1109/TADVP.2009.2021156

24. Elsheakh, D. M. N., M. F. Iskander, E. A.-F. Abdallah, H. A. Elsadek, and H. Elhenawy, "Microstrip array antenna with new 2D-electromagnetic band gap structure shapes to reduce harmonics and mutual coupling," Progress In Electromagnetics Research C, Vol. 12, 203-213, 2010.
doi:10.2528/PIERC09112008

25. Payandehjoo, K. and R. Abhari, "Highly-isolated unidirectional multi-slot-antenna systems for enhanced MIMO performance," International Journal of RF and Microwave Computer-aided Engineering, Vol. 24, 1-10, 2013.

26. Li, K., Y.-M. Cai, L. Li, and C.-H. Liang, "Design of a miniaturized zeroth- and first-order resonant antenna with mushroom cells and interdigital capacitors," Progress In Electromagnetics Research Letters, Vol. 47, 1-5, 2014.

27. Yuan, T., H. Hafdallah-Ouslimani, A. C. Priou, G. Lacotte, and G. Collignon, "Dual-layer EBG structures for low-profile ‘bent’ monopole antennas," Progress In Electromagnetics Research B, Vol. 47, 315-337, 2013.
doi:10.2528/PIERB12110502

28. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Apr. 7, 2004.

29. Kirschning, M., R. H. Jansen, and N. H. L. Koster, "Measurement and computer-aided modeling of microstrip discontinuities by an improved resonator method," IEEE MTT-S International Microwave Symposium Digest, 495-497, May 1983.
doi:10.1109/MWSYM.1983.1130959