Vol. 40
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-12-17
An Improved Predesign Procedure for Shaped-Beam Reflectarrays
By
Progress In Electromagnetics Research M, Vol. 40, 119-127, 2014
Abstract
This article describes an improved design procedure for shaped-beam reflectarrays, which is advanced mainly in accuracy and concision. Specifically, the excitation has been computed by a new approach named local simulation instead of mathematical modeling, which demonstrates more advantage in precision. The intersection approach has been applied to optimization, and it is improved by introducing a new multi-stage strategy into the synthesis process to avoid local minima. Moreover, the phase-only optimization, calculation of the reflection phase data table and the simulation verification processes are combined as a co-simulation procedure by VBScript (Visual Basic Script). This procedure is very beneficial to design reflectarrays with efficiency. As an example, a reflectarray consists of 621 dual-loop elements is optimized, and a good sectored-cosecant squared beam result is obtained.
Citation
Jian-Feng Yu, Lei Chen, Jing Yang, and Xiao-Wei Shi, "An Improved Predesign Procedure for Shaped-Beam Reflectarrays," Progress In Electromagnetics Research M, Vol. 40, 119-127, 2014.
doi:10.2528/PIERM14090306
References

1. Huang, J., Reflectarray Antenna, Wiley Online Library, 2008.

2. Chaharmir, M. R., et al. "Design of broadband, single layer dual-band large reflectarray using multi open loop elements," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 2875-2883, 2010.
doi:10.1109/TAP.2010.2052568        Google Scholar

3. Chulmin, H., et al. "A high efficiency offset-fed X/Ka-dual-band reflectarray using thin membranes," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 9, 2792-2798, 2005, 10.1109/TAP.2005.854531*10.1109/TAP.2005.854531.
doi:10.1109/TAP.2005.854531        Google Scholar

4. Arrebola, M., et al. "Multifed printed reflectarray with three simultaneous shaped beams for LMDS central station antenna," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1518-1527, 2008.
doi:10.1109/TAP.2008.923360        Google Scholar

5. Encinar, J. A., et al. "A transmit-receive reflectarray antenna for direct broadcast satellite applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3255-3264, 2011.
doi:10.1109/TAP.2011.2161449        Google Scholar

6. Nayeri, P., et al. "Design and experiment of a single-feed quad-beam reflectarray antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1166-1171, 2012.
doi:10.1109/TAP.2011.2173126        Google Scholar

7. Bucci, O. M., et al. "Intersection approach to array pattern synthesis," IEE Proceedings H — Microwaves, Antennas and Propagation, Vol. 137, No. 6, 349-357, 1990.
doi:10.1049/ip-h-2.1990.0064        Google Scholar

8. Nayeri, P., et al. "Design of single-feed reflectarray antennas with asymmetric multiple beams using the particle swarm optimization method," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 9, 4598-4605, 2013, 10.1109/TAP.2013.2268243*10.1109/TAP.2013.2268243.
doi:10.1109/TAP.2013.2268243        Google Scholar

9. Zornoza, J. A. and J. A. Encinar, "Efficient phase-only synthesis of contoured-beam patterns for very large reflectarrays," Int. J. RF and Microwave Computer-Aided Engineering, Vol. 14, No. 5, 415-423, 2004.
doi:10.1002/mmce.20028        Google Scholar

10. Encinar, J. A. and J. A. Zornoza, "Three-layer printed reflectarrays for contoured beam space applications," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, 1138-1148, 2004.
doi:10.1109/TAP.2004.827506        Google Scholar

11. Leberer, R. and W. Menzel, "A dual planar reflectarray with synthesized phase and amplitude distribution," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3534-3539, 2005.
doi:10.1109/TAP.2005.858813        Google Scholar

12. Vescovo, R., "Reconfigurability and beam scanning with phase-only control for antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1555-1565, 2008.
doi:10.1109/TAP.2008.923297        Google Scholar

13. Changhua, W. and J. A. Encinar, "Efficient computation of generalized scattering matrix for analyzing multilayered periodic structure," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 11, 1233-1242, 1995, 10.1109/TAP.1995.481174*10.1109/TAP.1995.481174.        Google Scholar

14. Carrasco, E., et al. "Design, manufacture and test of a low-cost shaped-beam reflectarray using a single layer of varying-sized printed dipoles," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 3077-3085, 2013.
doi:10.1109/TAP.2013.2254431        Google Scholar

15. Carrasco, E., et al. "Demonstration of a shaped beam reflectarray using aperture-coupled delay lines for LMDS central station antenna," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3103-3111, 2008.
doi:10.1109/TAP.2008.929452        Google Scholar

16. Arrebola, M., et al. "Multifed printed reflectarray with three simultaneous shaped beams for LMDS central station antenna," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1518-1527, 2008.
doi:10.1109/TAP.2008.923360        Google Scholar