Vol. 40
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-11-21
Ultra-Wide-Band Microwave Composite Absorbers Based on Phase Gradient Metasurfaces
By
Progress In Electromagnetics Research M, Vol. 40, 9-18, 2014
Abstract
In this paper, we propose to realize ultra-wide-band absorber (UWBA) based on anomalous refraction/reflection of phase gradient metasurfaces(PGM). To achieve high absorption and meanwhile keep small thickness at low frequencies, PGM is incorporated into conventional magnetic materials (MM). The absorptivity is increased due to prolonged propagation length in the MM, which is produced via anomalous refraction/reflection mediated by the PGM. Three typical composite configurations of PGM-based absorbers are investigated and an UWBA design method is finally formulated. Due to small thickness and ultra-wide bandwidth, such absorbers possess great application potentials in EM protection, RCS reduction, etc.
Citation
Yongfeng Li Jiafu Wang Jieqiu Zhang Shaobo Qu Yongqiang Pang Lin Zheng Mingbao Yan Zhuo Xu Anxue Zhang , "Ultra-Wide-Band Microwave Composite Absorbers Based on Phase Gradient Metasurfaces," Progress In Electromagnetics Research M, Vol. 40, 9-18, 2014.
doi:10.2528/PIERM14092502
http://www.jpier.org/PIERM/pier.php?paper=14092502
References

1. Meshram, M. R., N. K. Agrawal, B. Sinha, and P. S. Misra, "Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber," J. Magn. Magn. Mater., Vol. 271, 207-214, 2004.
doi:10.1016/j.jmmm.2003.09.045

2. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, 10927-10940, 2014.
doi:10.1039/C4NR03143A

3. Politano, A. and G. Chiarello, "Collective electronic excitations in systems exhibiting quantum well states," Surf. Rev. Lett., Vol. 16, 171-190, 2009.
doi:10.1142/S0218625X09012482

4. Cao, Z. X., F. G. Yuan, and L. H. Li, "A super-compact metamaterial absorber cell in L-band," Journal of Applied Physics, Vol. 115, 184904, 2014.
doi:10.1063/1.4875835

5. Tuong, P. V., D. L. Vu, J. W. Park, and Y. Lee, "Polarization-controlling dual-band absorption metamaterial," Adv. Nat. Sci: Nanosci. Nanotechnol., Vol. 4, 035009, 2013.
doi:10.1088/2043-6262/4/3/035009

6. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

7. Zhu, B., Z. Wang, C. Huang, Y. J. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

8. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 2074021-2074024, 2008.
doi:10.1103/PhysRevLett.100.207402

9. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, 2011.
doi:10.1126/science.1210713

10. Aieta, F., P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, "Out-of-plane reflection and refraction of light by anisotropic optical antennas metasurfaces with phase discontinuities," Nano Lett., Vol. 12, 1702-1706, 2012.
doi:10.1021/nl300204s

11. Aieta, F., P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Lett., Vol. 12, 4932-4936, 2012.
doi:10.1021/nl302516v

12. Yu, N., F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, "A broadband, background-free quarter-wave plate based on plasmonic metasurfaces," Nano Lett., Vol. 12, 6328-6333, 2012.
doi:10.1021/nl303445u

13. Roberts, A. and L. Lin, "Plasmonic quarter-wave plate," Opt. Lett., Vol. 37, 1820-1822, 2012.
doi:10.1364/OL.37.001820

14. Sun, S., Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, "Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves," Nat. Mater., Vol. 11, 426-431, 2012.
doi:10.1038/nmat3292

15. Grady, N. K., J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, 1304, 2013.
doi:10.1126/science.1235399

16. Chen, X., L. Huang, H. M¨uhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, T. Zentgraf, and S. Zhang, "Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens," Adv. Optical Mater., Vol. 1, 517-521, 2013.
doi:10.1002/adom.201300102

17. Huang, L., X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, "Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity," Light: Sci. Applications, Vol. 2, No. e70, 2013.

18. Wang, J. F., S. B. Qu, H. Ma, Z. Xu, A. X. Zhang, H. Zhou, H. Y. Chen, and Y. F. Li, "High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces," Appl. Phys. Lett., Vol. 101, 201104, 2012.
doi:10.1063/1.4767219

19. Li, Y. F., J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, "Wideband radar cross section reduction using two-dimensional phase gradient metasurface," Appl. Phys. Lett., Vol. 104, 221110, 2014.
doi:10.1063/1.4881935