Vol. 39
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-11-06
Automatic Target Recognition Using Jet Engine Modulation and Time-Frequency Transform
By
Progress In Electromagnetics Research M, Vol. 39, 151-159, 2014
Abstract
We propose a method to recognize targets by using the signature of jet engine modulation (JEM) generated by the rotating blades in jet engines. The method combines time-frequency transform, 2-dimensional (2D) principal component analysis, and a nearest-neighbor classifier. In simulationsusing five propellers composed of isotropic point scatterers,the proposed method was insensitive to signal-to-noise SNR variation; this insensitivity wasa result of the effective 2D time-frequency feature and the noise suppression by the matchedfilter. In simulations using a reduced training database, the result was most sensitive to variation in the rotation velocity of the blades.
Citation
Sang-Hong Park, "Automatic Target Recognition Using Jet Engine Modulation and Time-Frequency Transform," Progress In Electromagnetics Research M, Vol. 39, 151-159, 2014.
doi:10.2528/PIERM14100701
References

1. Chen, V. C., F. Li, S. S. Ho, and H. Wechsler, "Micro-Doppler effect in radar: Phenomenon, model, and simulation study," IEEE Trans. Aerosp. Electron. Syst., Vol. 42, No. 1, 2-21, Jan. 2006.
doi:10.1109/TAES.2006.1603402

2. Tait, P., Introduction to Radar Target Recognition, IET, 2005.
doi:10.1049/PBRA018E

3. Thayaparan, T., S. Abrol, E. Riseborough, L. Stankovic, D. Lamothe, and G. Duff, "Analysis of radar micro-Doppler signatures from experimental helicopter and human data," IET Radar Sonar Navig., Vol. 1, No. 4, 289-299, Aug. 2007.
doi:10.1049/iet-rsn:20060103

4. Li, J. and H. Ling, "Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts," Proc. Inst. Elect. Eng. Radar Sonar Navig., Vol. 150, No. 4, 284-291, Aug. 2003.
doi:10.1049/ip-rsn:20030729

5. Stankovic, L., I. Djurovic, and T. Thayaparan, "Separation of target rigid body and micro-Doppler effects in ISAR imaging," IEEE Trans. Aerosp. Electron. Syst., Vol. 42, No. 4, 1496-1506, Oct. 2006.
doi:10.1109/TAES.2006.314590

6. Zhang, Q., T. S. Yeo, H. S. Tan, and Y. Luo, "Imaging of a moving target with rotating parts based on the Hough transform," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 1, 291-299, Jan. 2008.
doi:10.1109/TGRS.2007.907105

7. Ghaleb, A., L. Vignaud, and J. M. Nicolas, "Micro-Doppler analysis of wheels and pedestrians in ISAR imaging," IET Signal Process., Vol. 2, No. 3, 301-311, Sep. 2008.
doi:10.1049/iet-spr:20070113

8. Kim, Y. and H. Ling, "Human activity classification based on micro-Doppler signatures using a support vector machine," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 5, 1328-1336, May 2009.
doi:10.1109/TGRS.2009.2012849

9. Jung, J. H., U. Lee, S. H. Kim, and S. H. Park, "Micro-Doppler analysis of Korean offshore wind turbine on the L-band radar," Progress In Electromagnetics Research, Vol. 143, 87-104, 2010.

10. Jung, J. H., K. T. Kim, S. H. Kim, and S. H. Park, "Micro-Doppler extraction and analysis of the ballistic missile using RDA based on the real flight scenario," Progress In Electromagnetics Research M, Vol. 37, 83-93, 2014.
doi:10.2528/PIERM14040804

11. Liu, L., D. Mclernon, M. Ghogho, W. Hu, and J. Huang, "Ballistic missile detection via micro-Doppler frequency estimation from radar return," Digital Signal Processing, Vol. 22, 87-95, 2012.
doi:10.1016/j.dsp.2011.10.009

12. Mahafza, B. R., Radar Systems Analysis and Design Using MATLAB, CRC Press LLC, 2000.
doi:10.1201/9781584888543

13. Qian, S., Time-freqency and Wavelet Transforms, Prentice Hall PTR, 2002.

14. Yang, J., D. Zhang, A. F. Frangi, and J.-Y. Yang, "Two-dimensional PCA: A new approach to appearance-based face representation and recognition," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 26, 131-137, Jan. 2004.
doi:10.1109/TPAMI.2004.1261097

15. Golub, G. H. and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, 1996.

16. Zyweck, A., "Preprocessing issues in high resolution radar target classification,", Ph.D. Thesis, University of Adelaide, Australia, 1995.

17. Han, S.-K., H.-T. Kim, S.-H. Park, and K.-T. Kim, "Efficient radar target recognition using a combination of range profile and time-frequency analysis," Progress In Electromagnetics Research, Vol. 108, 131-140, 2010.
doi:10.2528/PIER10071601

18. Park, S.-H., M.-G. Joo, and K.-T. Kim, "Construction of ISAR training database for automatic target recognition," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1493-1503 , 2011.
doi:10.1163/156939311797164909