Vol. 56
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-01-29
Development of an Equivalent Circuit Model of a Finite Ground Coplanar Waveguide Interconnect in MIS System for Ultra-Broadband Monolithic ICs
By
Progress In Electromagnetics Research C, Vol. 56, 1-13, 2015
Abstract
An equivalent circuit model of a finite ground plane coplanar waveguide (FGCPW) interconnect in a metal-insulator-semiconductor (MIS) system for an ultra-broadband monolithic IC is proposed and illustrated. An effective substrate considering Maxwell-Wagner Polarization is suggested and demonstrated. The method of modeling the weak skin effect of the conductor is presented. The accuracy of the equivalent circuit model is evaluated. This proposed FGCPW interconnect equivalent circuit model enables a quick and efficient time domain simulation to estimate the time delay and bandwidth of the ultra-broadband ICs.
Citation
Md Amimul Ehsan, Zhen Zhou, and Yang Yi, "Development of an Equivalent Circuit Model of a Finite Ground Coplanar Waveguide Interconnect in MIS System for Ultra-Broadband Monolithic ICs ," Progress In Electromagnetics Research C, Vol. 56, 1-13, 2015.
doi:10.2528/PIERC14100805
References

1. Milanovic, V., M. Ozgur, D. C. Degroot, J. A. Jargon, M. Gaitan, and M. E. Zaghloul, "Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates," IEEE Trans. Microwave Theory and Techniques, Vol. 46, No. 5, 632-640, May 1998.
doi:10.1109/22.668675

2. Tran, L. N., D. Pasquet, E. Bourdel, and S. Quintanel, "CAD-oriented model of a coplanar line on a silicon substrate including Eddy-current effects and skin effect," IEEE Trans. Microwave Theory and Techniques, Vol. 56, No. 3, 663-670, Mar. 2008.
doi:10.1109/TMTT.2008.916941

3. Vecchi, F., M. Repossi, W. Eyssa, P. Arcioni, and F. Svelto, "Design of low-loss transmission lines in scaled CMOS by accurate electromagnetic simulations," IEEE Journal of Solid-State Circuits, Vol. 44, No. 9, 2605-2615, Sep. 2009.
doi:10.1109/JSSC.2009.2023277

4. Sayan, A., D. Ritter, and D. Goren, "Compact modeling and comparative analysis of silicon-chip slow-wave transmission lines with slotted bottom metal ground planes," IEEE Trans. Microwave Theory and Techniques, Vol. 57, No. 4, 840-847, Apr. 2009.
doi:10.1109/TMTT.2009.2015041

5. Benevent, E., B. Viala, and J.-P. Michel, "Analytical modeling of multilayered coplanar waveguides including ferromagnetic thin films on semiconductor substrates," IEEE Trans. Microwave Theory and Techniques, Vol. 58, No. 3, 645-650, Mar. 2010.
doi:10.1109/TMTT.2010.2040336

6. Long, J. R., Y. Zhao, W. Wu, M. Spirito, L. Vero, and E. Gordon, "Passive circuit technologies for mm-wave wireless systems on silicon," IEEE Trans. Circuit and Systems, Vol. 59, No. 8, 1680-1693, Aug. 2012.
doi:10.1109/TCSI.2012.2206499

7. Ansoft HFSS, www.ansys.com, .
doi:10.1109/TCSI.2012.2206499

8. Tsang, L. and X. Chang, "Modeling of vias sharing the same antipad in planar waveguide with boundary integral equation and group T-matrix method," IEEE Trans. Components, Packaging and Manufacturing Tech., Vol. 3, No. 2, 315-327, Feb. 2013.
doi:10.1109/TCPMT.2012.2220771

9. Chang, X. and L. Tsang, "Fast and broadband modeling method for multiple vias with irregular antipad in arbitrarily shaped power/ground planes in 3-D IC and packaging based on generalized foldy-lax Equations," IEEE Trans. Components, Packaging and Manufacturing Tech., Vol. 4, No. 4, 685-696, Apr. 2014.
doi:10.1109/TCPMT.2013.2290897

10. Wu, B. and L. Tsang, "Signal integrity analysis of package and printed board with multiple vias in substrate of layered dielectrics," IEEE Trans. Advanced Packaging, Vol. 33, No. 2, May 2010.

11. Hasengawa, H., M. Furukawa, and Hisayoshi, "Properties of microstrip line on Si-SiO2 system," IEEE Trans. Microwave Theory and Techniques, Vol. 19, No. 11, 869-881, Nov. 1971.
doi:10.1109/TMTT.1971.1127658

12. Shibata, T. and E. Sano, "Characterization of MIS structure coplanar transmission lines for investigation of signal propagation in integrated circuits," IEEE Trans. Microwave Theory and Techniques, Vol. 38, No. 7, 881-890, Jul. 1990.
doi:10.1109/22.55780

13. Lee, H.-Y. and T. Itoh, "Phenomenological loss equivalent method for planar quasi-TEM transmission line with a thin normal conductor or supperconductor," IEEE Trans. Microwave Theory and Techniques, Vol. 37, No. 12, 1904-1909, Dec. 1989.
doi:10.1109/22.44101

14. Prodromakis, T. and C. Papavassiliou, "Engineering the Maxwell-Wagner polarization effect," Applied Surface Science, Vol. 255, No. 15, 6989-6994, May 2009.
doi:10.1016/j.apsusc.2009.03.030

15. Simons, R. N., Coplanar Waveguide, Circuits,Components, and Systems, John Wiley and Sons Inc., 2001.
doi:10.1002/0471224758

16. Collin, R. E., Foundations for Microwave Engineering (IEEE Press Serios on Electromagnetics Wave Theory), Wiley-IEEE Press, 1992.

17. Heinrich, W., "Quasi-TEM description of MMIC coplanar line including concutor loss effects," IEEE Trans. Microwave Theory and Techniques, Vol. 41, No. 1, 45-52, Jul. 1993.
doi:10.1109/22.210228

18. Hall, S. H. and H. L. Heck, Advanced Signal Integrity for High-speed Digital Design, John Wiley and Sons Inc., 2009.
doi:10.1002/9780470423899

19., www.ggb.com.

20. Riaziat, M., R. Majidi-Ahy, and I.-J. Feng, "Propagation modes and dispersion characteristics of coplanar waveguides," IEEE Trans. Microwave Theory and Techniques, Vol. 38, No. 3, 245-251, Mar. 1990.
doi:10.1109/22.45333