Vol. 41
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-02-05
Dynamic Properties of Rain Attenuation in Athens, Greece: Slant Path Rain Attenuation Synthesizer and Dynamic Diversity Gain
By
Progress In Electromagnetics Research M, Vol. 41, 43-50, 2015
Abstract
In this paper, the dynamics of rain attenuation are examined, and dynamic diversity gain is evaluated for a pico-scale site diversity system. Since modern satellite communication systems operate at frequencies above 10 GHz, their efficient design requires the adoption of Propagation Impairment Mitigation techniques and so rain attenuation time series synthesizers. For rain attenuation, which is the most dominant fading mechanism, the dynamic stochastic model, proposed by Maseng-Bakken, based on the lognormal distribution is the most widely accepted and used. In this latter model, the dynamic parameter is required for the generation of slant path rain attenuation time series. In this paper, firstly, a simple expression is proposed for the calculation of the dynamic parameter in terms of the mean wind speed, elevation angle of the link, and dynamic parameter of rainfall rate. The new theoretical expression is tested with simulated data with very encouraging results. This expression is then used into a unified rain attenuation synthesizer with inputs from the rainfall rate statistics and the satellite slant path characteristics. Finally, the dynamic diversity gain is calculated for pico-scale site diversity systems for various link characteristics.
Citation
Charilaos I. Kourogiorgas, Athanasios Panagopoulos, Spiros N. Livieratos, and George Chatzarakis, "Dynamic Properties of Rain Attenuation in Athens, Greece: Slant Path Rain Attenuation Synthesizer and Dynamic Diversity Gain," Progress In Electromagnetics Research M, Vol. 41, 43-50, 2015.
doi:10.2528/PIERM14112701
References

1. Panagopoulos, A. D., P.-D. Arapoglou, and P. G. Cottis, "Satellite communications at Ku, Ka and V bands: Propagation impairments and mitigation techniques," IEEE Communication Surveys and Tutorials, Vol. 6, No. 3, 2-14, 2004.
doi:10.1109/COMST.2004.5342290

2. Morello, A. and U. Reimers, "DVB-S2, the second generation standard for satellite broadcasting and unicasting," International Journal of Satellite Communications and Networking, Vol. 22, 249-268, 2004.
doi:10.1002/sat.788

3. Maseng, T. and P. Bakken, "A stochastic dynamic model of rain attenuation," IEEE Transactions on Communications, Vol. 29, No. 5, 660-669, 1981.
doi:10.1109/TCOM.1981.1095044

4. Kanellopoulos, S. A., A. D. Panagopoulos, and J. D. Kanellopoulos, "Calculation of the dynamic input parameter for a stochastic model simulating rain attenuation: A novel mathematical approach," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 11, 3257-3264, Part 2, 2007.
doi:10.1109/TAP.2007.908817

5. Panagopoulos, A. D. and J. D. Kanellopoulos, "On the rain attenuation dynamics: Spatial-temporal analysis of rainfall-rate and fade duration statistics," International Journal of Satellite Communications and Networking, Vol. 21, No. 6, 595-611, 2003.
doi:10.1002/sat.763

6. Kourogiorgas, C. I., A. D. Panagopoulos, J. D. Kanellopoulos, S. N. Livieratos, and G. E. Chatzarakis, "Investigation of rain fade dynamic properties using simulated rain attenuation data with synthetic storm technique," 2013 7th European Conference on Antennas and Propagation (EuCAP), 2277-2281, Apr. 8-12, 2013.

7. Andrade, F. J. A. and L. A. R. da Silva Mello, "Rain attenuation time series synthesize based on the gamma distribution," IEEE Antennas and Wireless Propag. Letters, Vol. 10, 1381-1384, 2011.
doi:10.1109/LAWP.2011.2178227

8. Cheffena, M., L. E. Braten, and T. Ekman, "On the space-time variations of rain attenuatioon," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1771-1782, 2009.
doi:10.1109/TAP.2009.2019862

9. Enjamio, C., E. Vilar, D. Ndzi, and F. Perez Fontan, "Short-scale diversity in a dynamic rain fade environment," International Journal of Satellite Communications and Networking, Vol. 23, 143-152, 2005.
doi:10.1002/sat.811

10. Matricciani, E., "Micro scale site diversity in satellite and tropospheric communication systems affected by rain attenuation," Space Coomunications, Vol. 19, 83-90, IOS Press, 2003.

11. Matricciani, E., "Physical-mathematical model of the dynamics of rain attenuation based on rain rate time series and a two-layer vertical structure of precipitation," Radio Science, Vol. 31, No. 2, 281-295, 1996.
doi:10.1029/95RS03129

12. Karlin, S. and H. Taylor, A Second Course in Stochastic Processes, Academic, 1981.

13. Karatzas, I. and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, 1991.

14. Matricciani, E. and C. Riva, "The search for the most reliable long-term rain attenuation CDF of a slant path and the impact on propagation models," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 7, 2307-2313, 2005.
doi:10.1109/TAP.2005.850762

15. Kourogiorgas, C., A. D. Panagopoulos, et al. "Analysis of 15-months rain rate measurements at NTUA campus," 6th European Conference on Antennas and Propagation, 505-509, Prague, Czech Republic, Mar. 26-30, 2012.

16. Matricciani, E., "Physical-mathematical model of dynamics of rain attenuation with application to power spectrum," Electronics Letters, Vol. 30, No. 6, 522-524, Mar. 17, 1994.
doi:10.1049/el:19940362

17. ITU-R. P. 618-10 "Propagation data and prediction methods required for the design of Earth-space communication systems,", Geneva, 2009.

18. Hodge, D. B., "An improved model for diversity gain on Earth-space propagation paths," Radio Science, Vol. 17, No. 6, 1393-1399, 1982.
doi:10.1029/RS017i006p01393

19. Luini, L. and C. Capsoni, "A rain cell model for the simulation and performance evaluation of site diversity schemes," IEEE Antennas and Wireless Propag. Letters, Vol. 12, 1327-1330, 2013.
doi:10.1109/LAWP.2013.2285400

20. Kourogiorgas, C., A. D. Panagopoulos, S. N. Livieratos, and G. E. Chatzarakis, "On the outage probability prediction of time diversity scheme in broadband satellite communication systems," Progress In Electromagnetics Research C, Vol. 44, 175-184, 2013.
doi:10.2528/PIERC13082704

21. Karagiannis, G. A., A. D. Panagopoulos, and J. D. Kanellopoulos, "Multidimensional rain attenuation stochastic dynamic modeling: Application to Earth-space diversity systems," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 11, 5400-5411, 2012.
doi:10.1109/TAP.2012.2208610

22. Kanellopoulos, J. D., A. D. Panagopoulos, and S. N. Livieratos, "Differential rain attenuation statistics including an accurate estimation of the effective slant path lengths," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 5, 663-664, 2000; Progress In Electromagnetics Research, Vol. 28, 97-120, 2000.
doi:10.1163/156939300X01373

23. Rafi Ul Islam, M., T. A. Rahman, S. K. B. A. Rahim, K. F. Al-Tabatabaie, and A. Y. Abdulrahman, "Fade margins prediction for broadband fixed wireless access (BFWA) from measurements in tropics," Progress In Electromagnetics Research C, Vol. 11, 199-212, 2009.
doi:10.2528/PIERC09103006