1. Ozdemir, C., Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms, John Wiley and Sons, INC., 2012.
doi:10.1002/9781118178072
2. Zhou, F., X. Bai, M. Xing, and Z. Bao, "Analysis of wide-angle radar imaging," IET Radar, Sonar and Navigation, Vol. 5, No. 4, 449-457, 2011.
doi:10.1049/iet-rsn.2010.0076 Google Scholar
3. Liu, Y., J. Zou, S. Xu, and Z. Chen, "Nonparametric rotational motion compensation technique for high-resolution isar imaging via golden section search," Progress In Electromagnetics Research M, Vol. 36, 67-76, 2014. Google Scholar
4. Chen, C.-C. and H. C. Andrews, "Target-motion-induced radar imaging," IEEE Transactions on Aerospace and Electronic Systems, Vol. 16, No. 1, 2-14, 1980.
doi:10.1109/TAES.1980.308873 Google Scholar
5. Wahl, D. E., P. H. Eichel, D. C. Ghiglia, C. V. Jakowatz, and Jr., "Phase gradient autofocusa robust tool for high resolution sar phase correction," IEEE Transactions on Aerospace and Electronic Systems, Vol. 30, No. 3, 827-835, 1994.
doi:10.1109/7.303752 Google Scholar
6. Martorella, M., F. Berizzi, and B. Haywood, "Contrast maximisation based technique for 2-d isar autofocusing," Sonar and Navigation IEE Proceedings-Radar, Vol. 152, No. 4, 253-262, 2005.
doi:10.1049/ip-rsn:20045123 Google Scholar
7. Berizzi, F., M. Martorella, A. Cacciamano, and A. Capria, "A contrast-based algorithm for synthetic range-profile motion compensation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 10, 3053-3062, 2008.
doi:10.1109/TGRS.2008.2002576 Google Scholar
8. Xi, L., L. Guosui, and J. Ni, "Autofocusing of isar images based on entropy minimization," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 4, 1240-1252, 1999.
doi:10.1109/7.805442 Google Scholar
9. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582 Google Scholar
10. Cand Es, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, 489-509, 2006.
doi:10.1109/TIT.2005.862083 Google Scholar
11. Herman, M. A. and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Transactions on Signal Processing, Vol. 57, 2275-2284, 2009.
doi:10.1109/TSP.2009.2014277 Google Scholar
12. Ender, J., "On compressive sensing applied to radar," Signal Processing, Vol. 90, 1402-1414, 2010.
doi:10.1016/j.sigpro.2009.11.009 Google Scholar
13. Amin, M. G. and F. Ahmad, "Compressive sensing for through-the-wall radar imaging," Journal of Electronic Imaging, Vol. 22, 030901, 2013.
doi:10.1117/1.JEI.22.3.030901 Google Scholar
14. Li, D., X. Li, Y. Cheng, Y. Qin, and H. Wang, "Radar coincidence imaging in the presence of target-motion-induced error," Journal of Electronic Imaging, Vol. 23, 023014, 2014.
doi:10.1117/1.JEI.23.2.023014 Google Scholar
15. Daiyin, Z., Y. Xiang, and Z. Zhaoda, "Algorithms for compressed isar autofocusing," IEEE CIE International Conference on Radar, 533-536, IEEE, Chengdu, 2011. Google Scholar
16. Zhu, D., Y. Li, X. Yu, W. Zhang, and Z. Zhu, "Compressed isar autofocusing: Experimental results," 2012 IEEE Radar Conference (RADAR), 425-430, 2012. Google Scholar
17. Lin, Q., Z. Chen, Y. Zhang, and J. Lin, "Coherent phase compensation method based on direct if sampling in wideband radar," Progress In Electromagnetics Research, Vol. 136, 753-764, 2013.
doi:10.2528/PIER12122203 Google Scholar
18. Wang, J. and X. Liu, "Improved global range alignment for isar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 3, 1070-1075, 2007.
doi:10.1109/TAES.2007.4383594 Google Scholar
19. Zhu, D., L. Wang, Y. Yu, Q. Tao, and Z. Zhu, "Robust isar range alignment via minimizing the entropy of the average range profile," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 2, 204-208, 2009.
doi:10.1109/LGRS.2008.2010562 Google Scholar
20. Xiaohui, Q., H. W. C. Alice, and Y. S. Yam, "Fast minimum entpy phase compensation for isar imaging," Journal of Electronics and Information Technology, Vol. 26, No. 10, 1656-1661, 2004. Google Scholar
21. Zhang, L., M. Xing, C.-W. Qiu, J. Li, and Z. Bao, "Achieving higher resolution isar imaging with limited pulses via compressed sampling," IEEE Geoscience and Remote Sensing Letters, Vol. 6, 567-571, 2009.
doi:10.1109/LGRS.2009.2021584 Google Scholar
22. Tropp, J. A. and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 53, 2007. Google Scholar
23. Chen, S. S., D. L. Donoho, and M. A. Saunders, "Key words. overcomplete signal representation, denoising, time-frequency analysis, time-scale," Society for Industrial and Applied Mathematics, Vol. 20, No. 1, 33-61, 1998. Google Scholar
24. Mohimani, G. H., M. Babaie-Zadeh, and C. Jutten, "A fast approach for overcomplete sparse decomposition based on smoothed l0 norm," IEEE Transactions on Signal Processing, Vol. 57, 289-301, 2007.
doi:10.1109/TSP.2008.2007606 Google Scholar
25. Liu, J., S. Xu, X. Gao, and X. Li, "Compressive radar imaging methods based on fast smoothed l0 algorithm," 2012 International Workshop on Information and Electronics Engineering, Vol. 29, 2209-2213, Elsevier Ltd., 2012. Google Scholar
26. Samadi, S., M. Çetin, and M. A. Masnadi-Shirazi, "Sparse representation-based synthetic aperture radar imaging," IET Radar, Sonar & Navigation, Vol. 5, No. 2, 182-193, 2011.
doi:10.1049/iet-rsn.2009.0235 Google Scholar
27. Yang, J., X. Huang, J. Thompson, T. Jin, and Z. Zhou, "Compressed sensing radar imaging with compensation of observation position error," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, 4608-4620, 2014.
doi:10.1109/TGRS.2013.2283054 Google Scholar