Vol. 41
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-02-27
Compensation of Phase Errors for Compressed Sensing Based ISAR Imagery Using Inadequate Pulses
By
Progress In Electromagnetics Research M, Vol. 41, 125-138, 2015
Abstract
Due to the inaccuracies in radar's measurement, autofocus including range alignment and phase compensation is always essential in inverse synthetic aperture radar (ISAR) imagery. Compressed sensing (CS) based ISAR imagery suggests that the image of target can be reconstructed from much fewer random pulses. Because the number of pulses is inadequate and the pulse intervals are nonuniform, conventional phase compensating algorithms can't work in CS imaging. In this paper, an iterative algorithm is proposed to compensate the phase errors and reconstruct high-resolution focused image from limited pulses. In each iteration, the image of target is reconstructed by CS method, and then the estimation of phase errors is updated based on the reconstructed image. By cycling these steps, well-focused image can be obtained. The smoothed ℓ0 algorithm is used to reconstruct the image, and the idea of minimum entropy optimization is used to estimate the phase errors. Besides, a method of extracting range bins in range profile based on amplitude information is proposed, which can reduce the computational complexity and improve the speed of convergence considerably. Both simulation and experiment results from real radar data demonstrate the effectiveness and feasibility of our method.
Citation
Qingkai Hou, Lijie Fan, Shaoying Su, and Zeng Ping Chen, "Compensation of Phase Errors for Compressed Sensing Based ISAR Imagery Using Inadequate Pulses," Progress In Electromagnetics Research M, Vol. 41, 125-138, 2015.
doi:10.2528/PIERM14120402
References

1. Ozdemir, C., Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms, John Wiley and Sons, INC., 2012.
doi:10.1002/9781118178072

2. Zhou, F., X. Bai, M. Xing, and Z. Bao, "Analysis of wide-angle radar imaging," IET Radar, Sonar and Navigation, Vol. 5, No. 4, 449-457, 2011.
doi:10.1049/iet-rsn.2010.0076

3. Liu, Y., J. Zou, S. Xu, and Z. Chen, "Nonparametric rotational motion compensation technique for high-resolution isar imaging via golden section search," Progress In Electromagnetics Research M, Vol. 36, 67-76, 2014.

4. Chen, C.-C. and H. C. Andrews, "Target-motion-induced radar imaging," IEEE Transactions on Aerospace and Electronic Systems, Vol. 16, No. 1, 2-14, 1980.
doi:10.1109/TAES.1980.308873

5. Wahl, D. E., P. H. Eichel, D. C. Ghiglia, C. V. Jakowatz, and Jr., "Phase gradient autofocusa robust tool for high resolution sar phase correction," IEEE Transactions on Aerospace and Electronic Systems, Vol. 30, No. 3, 827-835, 1994.
doi:10.1109/7.303752

6. Martorella, M., F. Berizzi, and B. Haywood, "Contrast maximisation based technique for 2-d isar autofocusing," Sonar and Navigation IEE Proceedings-Radar, Vol. 152, No. 4, 253-262, 2005.
doi:10.1049/ip-rsn:20045123

7. Berizzi, F., M. Martorella, A. Cacciamano, and A. Capria, "A contrast-based algorithm for synthetic range-profile motion compensation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 10, 3053-3062, 2008.
doi:10.1109/TGRS.2008.2002576

8. Xi, L., L. Guosui, and J. Ni, "Autofocusing of isar images based on entropy minimization," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 4, 1240-1252, 1999.
doi:10.1109/7.805442

9. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

10. Cand Es, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, 489-509, 2006.
doi:10.1109/TIT.2005.862083

11. Herman, M. A. and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Transactions on Signal Processing, Vol. 57, 2275-2284, 2009.
doi:10.1109/TSP.2009.2014277

12. Ender, J., "On compressive sensing applied to radar," Signal Processing, Vol. 90, 1402-1414, 2010.
doi:10.1016/j.sigpro.2009.11.009

13. Amin, M. G. and F. Ahmad, "Compressive sensing for through-the-wall radar imaging," Journal of Electronic Imaging, Vol. 22, 030901, 2013.
doi:10.1117/1.JEI.22.3.030901

14. Li, D., X. Li, Y. Cheng, Y. Qin, and H. Wang, "Radar coincidence imaging in the presence of target-motion-induced error," Journal of Electronic Imaging, Vol. 23, 023014, 2014.
doi:10.1117/1.JEI.23.2.023014

15. Daiyin, Z., Y. Xiang, and Z. Zhaoda, "Algorithms for compressed isar autofocusing," IEEE CIE International Conference on Radar, 533-536, IEEE, Chengdu, 2011.

16. Zhu, D., Y. Li, X. Yu, W. Zhang, and Z. Zhu, "Compressed isar autofocusing: Experimental results," 2012 IEEE Radar Conference (RADAR), 425-430, 2012.

17. Lin, Q., Z. Chen, Y. Zhang, and J. Lin, "Coherent phase compensation method based on direct if sampling in wideband radar," Progress In Electromagnetics Research, Vol. 136, 753-764, 2013.
doi:10.2528/PIER12122203

18. Wang, J. and X. Liu, "Improved global range alignment for isar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 3, 1070-1075, 2007.
doi:10.1109/TAES.2007.4383594

19. Zhu, D., L. Wang, Y. Yu, Q. Tao, and Z. Zhu, "Robust isar range alignment via minimizing the entropy of the average range profile," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 2, 204-208, 2009.
doi:10.1109/LGRS.2008.2010562

20. Xiaohui, Q., H. W. C. Alice, and Y. S. Yam, "Fast minimum entpy phase compensation for isar imaging," Journal of Electronics and Information Technology, Vol. 26, No. 10, 1656-1661, 2004.

21. Zhang, L., M. Xing, C.-W. Qiu, J. Li, and Z. Bao, "Achieving higher resolution isar imaging with limited pulses via compressed sampling," IEEE Geoscience and Remote Sensing Letters, Vol. 6, 567-571, 2009.
doi:10.1109/LGRS.2009.2021584

22. Tropp, J. A. and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 53, 2007.

23. Chen, S. S., D. L. Donoho, and M. A. Saunders, "Key words. overcomplete signal representation, denoising, time-frequency analysis, time-scale," Society for Industrial and Applied Mathematics, Vol. 20, No. 1, 33-61, 1998.

24. Mohimani, G. H., M. Babaie-Zadeh, and C. Jutten, "A fast approach for overcomplete sparse decomposition based on smoothed l0 norm," IEEE Transactions on Signal Processing, Vol. 57, 289-301, 2007.
doi:10.1109/TSP.2008.2007606

25. Liu, J., S. Xu, X. Gao, and X. Li, "Compressive radar imaging methods based on fast smoothed l0 algorithm," 2012 International Workshop on Information and Electronics Engineering, Vol. 29, 2209-2213, Elsevier Ltd., 2012.

26. Samadi, S., M. Çetin, and M. A. Masnadi-Shirazi, "Sparse representation-based synthetic aperture radar imaging," IET Radar, Sonar & Navigation, Vol. 5, No. 2, 182-193, 2011.
doi:10.1049/iet-rsn.2009.0235

27. Yang, J., X. Huang, J. Thompson, T. Jin, and Z. Zhou, "Compressed sensing radar imaging with compensation of observation position error," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, 4608-4620, 2014.
doi:10.1109/TGRS.2013.2283054