Vol. 41
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-02-02
Omnidirectional Reflection from Generalized Kolakoski Multilayers
By
Progress In Electromagnetics Research M, Vol. 41, 33-41, 2015
Abstract
The origin of omnidirectional band gaps in one-dimensional layered photonic structures which are aligned according to the generalized Kolakoski in flation rule are studied using the transfer matrix formalism. On their basis some particular designs of cascaded aperiodic heterostructures are proposed. It is found that the proposed cascaded structures stand out by the omnidirectional reflection bands which cover whole near-infrared spectral region.
Citation
Volodymyr I. Fesenko, "Omnidirectional Reflection from Generalized Kolakoski Multilayers," Progress In Electromagnetics Research M, Vol. 41, 33-41, 2015.
doi:10.2528/PIERM14121103
References

1. Maciá, E., "Exploiting aperiodic designs in nanophotonic devices," Rep. Prog. Phys., Vol. 75, No. 3, 036502, 2012.
doi:10.1088/0034-4885/75/3/036502

2. Dal Negro, L. and S. V. Boriskina, "Deterministic aperiodic nanostructures for photonics and plasmonics applications," Laser Photonics Rev., Vol. 6, 178-218, 2012.
doi:10.1002/lpor.201000046

3. Tuz, V. R., "A peculiarity of localized mode transfiguration of a Cantor-like chiral multilayer," J. Opt. A: Pure Appl. Opt., Vol. 11, No. 12, 125103, 2009.
doi:10.1088/1464-4258/11/12/125103

4. Fesenko, V. I., "Aperiodic birefringent photonic structures based on Kolakoski sequence," Waves in Random and Complex Media, Vol. 24, No. 2, 174-190, 2014.
doi:10.1080/17455030.2014.890764

5. Vardeny, Z. V., A. Nahata, and A. Agrawal, "Optics of photonic quasicrystals," Nature Photonics, Vol. 7, 177-187, 2013.
doi:10.1038/nphoton.2012.343

6. Kolakoski, W., "Self generating runs, Problem 5304," Amer. Math. Mon., Vol. 72, 674, 1965.

7. Sing, B., "More Kolakoski sequences," Integers, Vol. 11-B, 1-16, 2011.

8. Sing, B., "Kolakoski sequences - An example of aperiodic order," J. Non-Cryst. Solid, Vol. 334, 100-104, 2004.
doi:10.1016/j.jnoncrysol.2003.11.021

9. Kohmoto, M., B. Sutherland, and K. Iguchi, "Localization of optics: Quasiperiodic media," Phys. Rev. Lett., Vol. 58, 2436-2438, 1987.
doi:10.1103/PhysRevLett.58.2436

10. Barriuso, A. G., J. J. Monzón, T. Yonte, A. Felipe, and L. L. Sánchez-Soto, "Omnidirectional reflection from generalized Fibonacci quasicrystals," Optics Express, Vol. 21, No. 24, 30039-30053, 2013.
doi:10.1364/OE.21.030039

11. Tuz, V. R., "Optical properties of a quasiperiodic generalized Fibonacci structure of chiral and material layers," J. Opt. Soc. Am. B, Vol. 26, No. 12, 627-632, 2009.
doi:10.1364/JOSAB.26.000627

12. Tuz, V. R., V. I. Fesenko, and I. A. Sukhoivanov, "Optical characterization of the aperiodic multilayered anisotropic structure based on Kolakoski sequence," Proc. SPIE, Vol. 8781, 87811C, 2013.
doi:10.1117/12.2017342

13. Fesenko, V. I., V. R. Tuz, P. P. Rocha Garcia, and I. A. Sukhoivanov, "Dispersion properties of a one-dimensional aperiodic OmniGuide structure," Proc. SPIE, Vol. 9200, 920017, 2014.

14. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.
doi:10.1126/science.282.5394.1679

15. Qiu, F., R. W. Peng, X. Q. Huang, X. F. Hu, M. Wang, A. Hu, S. S. Jiang, and D. Feng, "Omnidirectional reflection of electromagnetic waves on Thue-Morse dielectric multilayer," Europhys. Lett., Vol. 68, 658-663, 2004.
doi:10.1209/epl/i2004-10261-y

16. Hsueh, W. J., C. T. Chen, and C. H. Chen, "Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism," Phys. Rev. A, Vol. 78, 013836, 2008.
doi:10.1103/PhysRevA.78.013836

17. Zhang, H. F., S. B. Liu, X. K. Kong, B. R. Bian, and X. Zhao, "Properties of omnidirectional photonic band gaps in Fibonacci quasi-periodic one-dimensional superconductor photonic crystals," Progress In Electromagnetics Research B, Vol. 40, 415-431, 2012.
doi:10.2528/PIERB12040406

18. Wang, X., X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zia, "Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures," Appl. Phys. Lett., Vol. 80, No. 23, 4291-4293, 2002.
doi:10.1063/1.1484547

19. Zhang, J. and T. M. Benson, "Design of omnidirectional reflectors based on a cascaded one-dimensional photonic crystal structure," J. Mod. Opt., Vol. 60, No. 20, 1804-1812, 2014.
doi:10.1080/09500340.2013.863400

20. Xiang, Y., X. Dai, and S. Wen, "Broad omnidirectional total reflectors by using the combination of Thue-Morse photonic crystal," International Symposium on Biophotonics, Nanophotonics and Metamaterials, Metamaterials 2006, 358-361, 2006.
doi:10.1109/METAMAT.2006.334915

21. Jia, W., L. Jiang, G. Zheng, X. Li, and H. Li, "Broad omnidirectional high-precision filters design using genetic algorithm," Optics and Laser Technology, Vol. 42, 382-386, 2010.
doi:10.1016/j.optlastec.2009.08.013

22. Manzanares-Martinez, J., R. Archuleta-Garcia, P. Castro-Garay, D. Moctezuma-Enriquez, and E. Urrutia-Banuelos, "One-dimensional photonic heterostructure with broadband omnidirectional reflection," Progress In Electromagnetics Research, Vol. 111, 105-117, 2011.
doi:10.2528/PIER10110404

23. Allouche, J. P. and J. O. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003.
doi:10.1017/CBO9780511546563

24. Tuz, V. R. and V. B. Kazanskiy, "Depolarization properties of a periodic sequence of chiral and material layers," J. Opt. Soc. Am. A, Vol. 25, No. 11, 2704-2709, 2008.
doi:10.1364/JOSAA.25.002704