1. Kriezis, E. E., T. D. Tsiboukis, S. M. Panas, and J. A. Tegopoulos, "Eddy currents: Theory and application," Proceedings of the IEEE, Vol. 80, No. 10, 1559-1589, Oct. 1992.
doi:10.1109/5.168666 Google Scholar
2. Prenston, T. W. and A. B. J. Reece, "Solution of 3-D eddy current problems: The T-Omega method," IEEE Trans. Magn., Vol. 18, 486-491, 1982.
doi:10.1109/TMAG.1982.1061899 Google Scholar
3. Webb, J. P. and B. Forghani, "A T-Omega method using hierarchal edge elements," Proc. Inst. Elec. Eng. Sci. Meas. Technol., Vol. 142, No. 2, 133-141, Mar. 1995.
doi:10.1049/ip-smt:19951439 Google Scholar
4. Jin, J., The Finite Element Method in Electromagnetics, Wiley-IEEE Press, 2002.
5. He, B., P. Zhou, D. Lin, and C. Lu, "High order finite elements in T-Ω method considering multiply-connected regions," Compumag Conference, 5-20, 2013. Google Scholar
6. Bossavit, A., "Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism," IEE Proc., Vol. 135, No. 3, 179-187, 1988. Google Scholar
7. He, B. and F. L. Teixeira, "Compatible diecretizations for Maxwell equations," VDM Verlag, 28, 2009. Google Scholar
8. Webb, J. P. and B. Forghani, "A single scalar potential method for 3D magnetostatics using edge elements," IEEE Trans. Magn., Vol. 25, 4126-4128, 1989.
doi:10.1109/20.42543 Google Scholar
9. He, B. and F. L. Teixeira, "On the degree of freedom of lattice electrodynamics," Phys. Lett. A, Vol. 336, 1-7, 2005.
doi:10.1016/j.physleta.2005.01.001 Google Scholar
10. Deschamps, G. A., "Electromagnetics and differential forms," Proceedings of the IEEE, Vol. 69, 676-696, 1981.
doi:10.1109/PROC.1981.12048 Google Scholar
11. Lee, S., J. Lee, and R. Lee, "Hierarchical vector finite elements for analyzing waveguiding structures," IEEE Trans. on Microwave Theory and Techniques, Vol. 51, No. 5, 1897-1905, 2003. Google Scholar
12. Ren, Z., "Application of differential forms in the finite element formulation of electromagnetic problems," ICS Newsletter, Vol. 7, No. 3, 6-11, 2000. Google Scholar
13. Webb, J. P. and B. Forghani, "Hierarchal scalar and vector tetrahedra," IEEE Trans. Magn., Vol. 29, 1495-1498, 1993.
doi:10.1109/20.250686 Google Scholar
14. Zienkiewicz, O. C., R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Butterworth-Heinemann, 2006.
15. Kettunen, L., K. Forsman, and A. Bossavit, "Discrete spaces for div and curl-free fields," IEEE Trans. Magn., Vol. 34, 2551-2554, 2002. Google Scholar
16. Ren, Z., "T-Ω formulation for eddy current problems in multiply connected regions," IEEE Trans. Magn., Vol. 38, 557-560, 2002.
doi:10.1109/20.996146 Google Scholar
17. Demenko, A. and J. K. Sykulski, "Network representation of conducting regions in 3D finite element description of electrical machines," IEEE Trans. Magn., Vol. 44, No. 6, 714-717, 2008.
doi:10.1109/TMAG.2007.916391 Google Scholar
18. Wojciechowski, R. M., A. Demenko, and J. K. Sykulski, "Inducted currents analysis in multiply connected conductors using reluctance-resistance networks," COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 29, No. 4, 908-918, 2010.
doi:10.1108/03321641011044325 Google Scholar
19. Dlotko, P. and R. Specogna, "Lazy cohomology generators: A breakthrough in (co)homology computations for CEM," IEEE Trans. Magn., Vol. 50, No. 2, 577-580, 2014.
doi:10.1109/TMAG.2013.2281076 Google Scholar
20. Simkin, J., S. C. Taylor, and E. X. Xu, "An efficient algorithm for cutting multiply connected regions," IEEE Trans. Magn., Vol. 40, No. 2, 707-709, 2004.
doi:10.1109/TMAG.2004.825037 Google Scholar
21. Phung, A. T., O. Chadebec, P. Labie, Y. Le Floch, and G. Meunier, "Automatic cuts for magnetic scalar potential formulations," IEEE Trans. Magn., Vol. 41, No. 5, 1668-1671, 2005.
doi:10.1109/TMAG.2005.846105 Google Scholar
22. Crager, J. C. and P. R. Kotiuga, "Cuts for the magnetic scalar potential in knotted geometries and force-free magnetic fields," IEEE Trans. Magn., Vol. 38, No. 2, 1309-1312, 2002.
doi:10.1109/TMAG.2002.996334 Google Scholar
23. Gross, P. W. and P. R. Kotiuga, "Finite element-based algorithms to make cuts for magnetic scalar potentials: Topological constraints and computational complexity," Geometric Methods for Computational Electromagnetics, Vol. 32, 207-245, 2001. Google Scholar
24. http://www.compumag.org/jsite/team.html.
25. Biro, O., K. Preis, W. Renhart, K. R. Ritcher, and G. Vrisk, "Performance of different vector potential formulations in solving multiply connected 3D eddy current problems," IEEE Trans. Magn., Vol. 26, 438-441, 1990.
doi:10.1109/20.106347 Google Scholar
26. Cheng, Z., N. Takahashi, Q. Hu, and C. C. Fan, "TEAM-based benchmark family: Problem 21/21 + 21," Proc. 4th Int. Conf. Computation in Electromagnetics, 2002. Google Scholar