1. Holloway, C. L., A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, "A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials," Metamaterials, Vol. 3, 100-112, 2009.
doi:10.1016/j.metmat.2009.08.001 Google Scholar
2. Sun, S., Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, "Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves," Nature Materials, Vol. 11, 426-431, 2012.
doi:10.1038/nmat3292 Google Scholar
3. Lin, D., P. Fan, E. Hasman, and M. L. Brongersma, "Dielectric gradient metasurface optical elements," Science, Vol. 345, 298-302, 2014.
doi:10.1126/science.1253213 Google Scholar
4. Zhu, W., I. D. Rukhlenko, Y. Huang, G.Wen, and M. Premaratne, "Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complimentary twisted configuration," Journal of Optics, Vol. 15, 125101, 2013.
doi:10.1088/2040-8978/15/12/125101 Google Scholar
5. Kim, T.-T., S. S. Oh, H.-S. Park, R. Zhao, S.-H. Kim, W. Choi, B. Min, and O. Hess, "Optical activity enhanced by strong inter-molecular coupling in planar chiral metamaterials," Scientific Reports, Vol. 4, 5864, 2014.
doi:10.1038/srep05864 Google Scholar
6. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
7. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B, Vol. 78, 241103(R), 2008.
doi:10.1103/PhysRevB.78.241103 Google Scholar
8. Watts, C. M., X. liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater., Vol. 24, OP98-OP120, 2012. Google Scholar
9. Yoo, Y. J., H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J.-H. Kang, K. M. Kim. H. Cheong, Y. H. Kim, and Y. P. Lee, "Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell," Appl. Phys. Lett., Vol. 105, No. 4, 041902, 2014.
doi:10.1063/1.4885095 Google Scholar
10. Liu, X., Q. Zhao, C. Lan, and J. Zhou, "Isotropic Mie resonance-based metamaterial perfect absorber," Appl. Phys. Lett., Vol. 103, No. 3, 031910, 2013.
doi:10.1063/1.4813914 Google Scholar
11. El-Aasser, M. A., "Design optimization of nanostrip metamaterial perfect absorbers," Journal of Nanophotonics, Vol. 8, No. 1, 083085, 2014.
doi:10.1117/1.JNP.8.083085 Google Scholar
12. Costa, F., S. Genovesi, A. Monorchio, and G. Manara, "A circuit-based model for the interpretation of perfect metamaterial absorbers," IEEE Trans. Antennas and Propagation, Vol. 61, No. 3, 1201-1209, 2013.
doi:10.1109/TAP.2012.2227923 Google Scholar
13. He, Y., H. Deng, X. Jiao, S. He, J. Gao, and X. Yang, "Infrared perfect absorber based on nanowire metamaterial cavities," Opt. Lett., Vol. 38, No. 7, 1179-1181, 2013.
doi:10.1364/OL.38.001179 Google Scholar
14. Zhong, J., Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, "Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs," Appl. Phys. A, Vol. 108, 329-335, 2012.
doi:10.1007/s00339-012-6989-0 Google Scholar
15. Dincer, F., M. Karaaslan, E. Unal, K. Delihacioglu, and C. Sabah, "Design of polarization and incident angle insensitive dual-band metamaterial absorber based on isotropic resonators," Progress In Electromagnetics Research, Vol. 144, 123-132, 2014.
doi:10.2528/PIER13111403 Google Scholar
16. Wang, G.-D., J.-F. Chen, X. Hu, Z.-Q. Chen, and M. Liu, "Polarization-insensitive triple-band microwave metamaterial absorber based on rotated square rings," Progress In Electromagnetics Research, Vol. 145, 175-183, 2014.
doi:10.2528/PIER14010401 Google Scholar
17. Bhattacharyya, S. and K. V. Srivastava, "Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator," J. Appl. Phys., Vol. 115, 064508, 2014.
doi:10.1063/1.4865273 Google Scholar
18. Li, H., L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers," J. Appl. Phys., Vol. 110, 014909, 2011.
doi:10.1063/1.3608246 Google Scholar
19. Tian, Y., G. Wen, and Y. Huang, "Multiband negative permittivity metamaterials and absorbers," Advances in Optoelectronics, Vol. 2013, 269170, 2013. Google Scholar
20. Zhu, W., Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, "Configurable metamaterial absorber with pseudo wideband spectrum," Opt. Express, Vol. 20, 6616-6621, 2012.
doi:10.1364/OE.20.006616 Google Scholar
21. Huang, Y., G. Wen, W. Zhu, J. Li, L.-M. Si, and M. Premaratne, "Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber," Opt. Express, Vol. 22, 16408-16417, 2014.
doi:10.1364/OE.22.016408 Google Scholar
22. Li, W., U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, "Refractory plasmonics with titanium nitride: Broadband metamaterial absorber," Advanced Materials, Vol. 26, No. 47, 7959-7965, 2014.
doi:10.1002/adma.201401874 Google Scholar
23. Li, W., X. Qiao, Y. Luo, F. X. Qin, and H. X. Peng, "Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism," Appl. Phys. A, Vol. 115, No. 1, 229-234, 2014.
doi:10.1007/s00339-013-7996-5 Google Scholar
24. Cui, Y., K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, "Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab," Nano Lett., Vol. 12, 1443-1447, 2012.
doi:10.1021/nl204118h Google Scholar
25. Zhu, J., Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, "Ultra-broadband terahertz metamaterial absorber," Appl. Phys. Lett., Vol. 105, No. 2, 021102, 2014.
doi:10.1063/1.4890521 Google Scholar
26. Wanghuang, T., W. Chen, Y. Huang, and G. Wen, "Analysis of metamaterial absorber in normal and oblique incidence by using interference theory," AIP Adv., Vol. 3, 102118, 2013.
doi:10.1063/1.4826522 Google Scholar
27. Pang, Y., H. Cheng, Y. Zhou, and J. Wang, "Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach," J. Appl. Phys., Vol. 113, 114902, 2013.
doi:10.1063/1.4795277 Google Scholar
28. Cao, Z. X., F. G. Yuan, and L. H. Li, "A super-compact metamaterial absorber cell in L-band," J. Appl. Phys., Vol. 115, 184904, 2014.
doi:10.1063/1.4875835 Google Scholar
29. Lin, B.-Q., X.-Y. Da, S.-H. Zhao, W. Meng, F. Li, Q.-R. Zheng, and B. H. Wang, "Low frequency ultra-thin compact metamaterial absorber comprising split-ping resonators," Chin. Phys. Lett., Vol. 31, 067801, 2014.
doi:10.1088/0256-307X/31/6/067801 Google Scholar
30. Huang, Y. J., G. J. Wen, J. Li, J. P. Zhong, P. Wang, Y. H. Sun, O. Gordon, and W. R. Zhu, "Metamaterial absorbers realized in X-band rectangular waveguide," Chin. Phys. B, Vol. 21, 117801, 2012. Google Scholar
31. Padilla, W. J., M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B, Vol. 75, 041102, 2007.
doi:10.1103/PhysRevB.75.041102 Google Scholar
32. Kolb, P. W., T. S. Salter, J. A. McGee, H. D. Drew, and W. J. Paddilla, "Extreme subwavelength electric GHz metamaterials," J. Appl. Phys., Vol. 110, 054906, 2011.
doi:10.1063/1.3633213 Google Scholar
33. Chen, W.-C., C. M. Bingham, K. M. Mak, N. W. Caira, and W. J. Paddilla, "Extremely subwavelength planar magnetic metamaterials," Phys. Rev. B, Vol. 85, 201104, 2012.
doi:10.1103/PhysRevB.85.201104 Google Scholar
34. Zhu, W. and X. Zhao, "Numerical study of low-loss cross left-handed metamaterials at visible frequency," Chin. Phys. Lett., Vol. 26, 074212, 2009. Google Scholar