Vol. 56
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-02-17
Design of a 225 GHz High Output Power Tripler Based on Unbalanced Structure
By
Progress In Electromagnetics Research C, Vol. 56, 101-108, 2015
Abstract
We report the results of a high-output power unbalanced tripler at 225 GHz, in which a pair of discrete Schottky varactor chips in parallel is adopted. Considering the present situation of domestic processing technology, the advantage of unbalanced structure is that it could provide bias to the diodes without a on-chip capacitor, which is essential in the balanced tripler scheme. The whole circuits are built on a 50 um-thick quartz substrate, and the novel field-circuit method is applied to the design process that enables us to calculate the impact of the parastics. The measured results indicate that the output power is more than 7 dBm in 215~228 GHz, and the output power is 12.3 dBm at 224 GHz when driven with 23.8 dBm of input power at room temperature. In general, this tripler has important practical value.
Citation
Jin Meng, De Hai Zhang, Chang Fei Yao, Chang Hong Jiang, and Xin Zhao, "Design of a 225 GHz High Output Power Tripler Based on Unbalanced Structure," Progress In Electromagnetics Research C, Vol. 56, 101-108, 2015.
doi:10.2528/PIERC15012001
References

1. Wang, H., A. maestrini, B. Thomas, et al. "Development of a two-pixel integrated heterodyne Schottky diode receiver at 183 GHz," 19th International Symposium on Space Terahertz Technology, 490-493, 2008.

2. Wang, H., "Design and modeling of monolithic circuits Schottky diode on a GaAs substrate at millimeter and submillimeter wavelengths heterodyne receivers for multi-pixel and on board satellites dedicated to planetary aeronomy,", Doctor Thesis, University of P&M Curie, Paris, 2009.

3. Hesler, J. L., "Planar Schottky diodes in submillimeter wavelength waveguide receivers," Doctor Thesis, University of Virginia, 1996.

4. Thornton, J., C. M. Mann, and P. de Maagt, "Optimization of a 250-GHz Schottky tripler using novel fabrication and design techniques,", Vol. 46, No. 8, 1055-1061, 1998.

5. Schoeberl, M. R., A. R. Douglass, E. Hilsenrath, et al. "Overview of the EOS aura mission," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 5, 1066-1074, 2006.
doi:10.1109/TGRS.2005.861950

6. Brown, R. L., "Technical specification of the millimeter array," Proc. SPIE, Advanced Technology MMW, Radio, and Terahertz Telescopes, Vol. 3357, 231-237, 1998.
doi:10.1117/12.317357

7. Maestrini, A., J. Ward, G. Chattopadhyay, et al. "Terahertz sources based on frequency multiplication and their applications," Journal of RF-Engineering and Telecommunications in Frequency, 118-122, 2008.

8. Bruston, J., A. Maestrini, D. Pukala, et al. "A 1.2THz planar tripler using GaAs membrane based chips," Proceedings of the 12th International Symposium on Space Terahertz Technology, 310-319, 2001.

9. Schlecht, E., G. Chattopadhyay, A. Maestrini, et al. "200, 400, and 800 GHz Schottky diode substrateless multipliers: Design and results," IEEE MTT-S International Microwave Symposium Digest, 1649-1652, 2001.

10. Meng, J., D.-H. Zhang, C.-H. Jiang, et al. "Research on the practical design method of 225 GHz tripler," J. Infrated Millim. Waves, in Press.

11. Maestrini, A., B. Thomas, H. Wang, et al. "Schottky diode-based terahertz frequency multipliers and mixers," Comptes Rendus Physique, Vol. 11, No. 7, 480-495, 2010.
doi:10.1016/j.crhy.2010.05.002

12. Maestrini, A., J. S. Ward, J. J. Gill, et al. "A 540–640-GHz high-efficiency four-anode frequency tripler," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 9, 2835-2843, 2005.
doi:10.1109/TMTT.2005.854174

13. Porterfield, D. W., "High-efficiency terahertz frequency tripler," IEEE MTT-S International Microwave Symposium Digest, 337-340, Honolulu, Hawaii, 2007.

14. Marsh, S., B. Alderman, D. Matheson, and P. de Maagt, "Design of low-cost 183 GHz subharmonic mixers for commercial applications," IET Circuits Devices Syst., Vol. 1, No. 1, 1-6, 2007.
doi:10.1049/iet-cds:20060212

15. Grajal, J., V. Krozer, E. Gonzalez, et al. "Modeling and design aspects of millimeter-wave and submillimeter-wave Schottky diode varactor frequency multipliers," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 4, 700-712, 2000.
doi:10.1109/22.841962

16. Zhang, Y., Q.-Q. Lu, W. Liu, et al. "Design of a 220 GHz frequency tripler based om EM model of Schottky diodes," J. Infrated Millim. Waves, Vol. 33, No. 4, 405-411, 2014.

17. Zhong, W., "Research on 220 GHz frequency multiplication technology based on Schottky barrier diodes,", School of Electronic Engineering, Chengdu, 2014.

18., Online: http://www.cas.cn/ky/kyjz/201210/t20121029 3668673.shtml.

19. Schlecht, E., G. Chattopadhyay, A. Maestrini, et al. "Harmonic balance optimization of terahertz Schottky diode multipliers using an advanced device model," 13th Int. Symp. Space Terahertz Technology, 187-196, 2002.

20. Kollberg, E. L., T. J. Tolmunen, M. A. Frerking, et al. "Current saturation in submillimeter wave varactors," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 5, 831-838, 1992.
doi:10.1109/22.137387