1. Geim, A. K., "Graphene: Status and prospects," Science, Vol. 324, No. 5934, 1530-1534, 2009.
doi:10.1126/science.1158877 Google Scholar
2. Allen, M. J., V. C. Tung, and R. B. Kaner, "Honeycomb carbon: A review of graphene," Chemical Reviews, Vol. 110, No. 1, 132-145, 2009.
doi:10.1021/cr900070d Google Scholar
3. Cooper, D. R., B. D’. Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, and V. Yu, "Experimental review of graphene," International Scholarly Research Notices, Vol. 2012, 2012. Google Scholar
4. Lin, Y.-M., C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and Ph. Avouris, "100-GHz transistors from wafer-scale epitaxial graphene," Science, Vol. 327, No. 5966, 662-662, 2010.
doi:10.1126/science.1184289 Google Scholar
5. Wu, Y., Y. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, "High-frequency, scaled graphene transistors on diamond-like carbon," Nature, Vol. 472, No. 7341, 74-78, 2011.
doi:10.1038/nature09979 Google Scholar
6. Ming, L., X. B. Yin, and X. Zhang, "Double-layer graphene optical modulator," Nano Letters, Vol. 12, No. 3, 1482-1485, 2012.
doi:10.1021/nl204202k Google Scholar
7. Francescato, Y., V. Giannini, J. J. Yang, M. Huang, and S. A. Maier, "Graphene sandwiches as a platform for broadband molecular spectroscopy," ACS Photonics, Vol. 1, No. 5, 437-443, 2014.
doi:10.1021/ph5000117 Google Scholar
8. Liu, H. T., Y. Q. Liu, and D. B. Zhu, "Chemical doping of graphene," Journal of Materials Chemistry, Vol. 21, No. 10, 3335-3345, 2011.
doi:10.1039/C0JM02922J Google Scholar
9. Fang, Z. Y., Y. M. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. L. Koppens, P. Nordlander, and N. J. Halas, "Plasmon-induced doping of graphene," Acs Nano, Vol. 6, No. 11, 10222-10228, 2012.
doi:10.1021/nn304028b Google Scholar
10. Ashkan, V. and N. Engheta, "Transformation optics using graphene," Science, Vol. 332, No. 6035, 1291-1294, 2011.
doi:10.1126/science.1202691 Google Scholar
11. Perruisseau-Carrier, J., "Graphene for antenna applications: Opportunities and challenges from microwaves to THz," IEEE Antennas and Propagation Conference (LAPC), 2012, 1-4, Loughborough, 2012. Google Scholar
12. Dragoman, M., A. A. Muller, D. Dragoman, F. Coccetti, and R. Plana, "Terahertz antenna based on graphene," Journal of Applied Physics, Vol. 107, No. 10, 104313, 2010.
doi:10.1063/1.3427536 Google Scholar
13. Llatser, I., C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, "Graphene-based nano-patch antenna for terahertz radiation," Photonics and Nanostructures-Fundamentals and Applications, Vol. 10, No. 4, 353-358, 2012.
doi:10.1016/j.photonics.2012.05.011 Google Scholar
14. Tamagnone, M., J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, "Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets," Journal of Applied Physics, Vol. 112, No. 11, 114915, 2012.
doi:10.1063/1.4768840 Google Scholar
15. Tamagnone, M., J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, "Reconfigurable terahertz plasmonic antenna concept using a graphene stack," Applied Physics Letters, Vol. 101, No. 21, 214102, 2012.
doi:10.1063/1.4767338 Google Scholar
16. Zhou, T., Z. Cheng, H. Zhang, M. Berre, L. Militaru, and F. Calmon, "Miniaturized tunable terahertz antenna based on graphene," Microwave and Optical Technology Letters, Vol. 56, No. 8, 1792-1794, 2014.
doi:10.1002/mop.28450 Google Scholar
17. Dragoman, M., M. Aldrigo, A. Dinescu, D. Dragoman, and A. Costanzo, "Towards a terahertz direct receiver based on graphene up to 10 THz," Journal of Applied Physics, Vol. 115, No. 4, 044307, 2014.
doi:10.1063/1.4863305 Google Scholar
18. Jornet, J. M. and I. F. Akyildiz, "Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band," 2010 Proceedings of the Fourth European Conference on IEEE Antennas and Propagation (EuCAP), 1-5, 2010. Google Scholar
19. Jornet, J. M. and I. F. Akyildiz, "Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks," IEEE Journal on Selected Areas in Communications, Vol. 31, No. 12, 685-694, 2013.
doi:10.1109/JSAC.2013.SUP2.1213001 Google Scholar
20. Tamagnone, M. and J. Perruisseau-Carrier, "Predicting input impedance and efficiency of graphene reconfigurable dipoles using a simple circuit model,", arXiv preprint arXiv:1402.1527, 2014. Google Scholar
21. Liu, P., W. Cai, L. Wang, X. Zhang, and J. Xu, "Tunable terahertz optical antennas based on graphene ring structures," Applied Physics Letters, Vol. 100, No. 15, 153111, 2012.
doi:10.1063/1.3702819 Google Scholar
22. Filter, R., M. Farhat, M. Steglich, R. Alaee, C. Rockstuhl, and F. Lederer, "Tunable graphene antennas for selective enhancement of THz-emission," Optics Express, Vol. 21, No. 3, 3737-3745, 2013.
doi:10.1364/OE.21.003737 Google Scholar
23. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics, Vol. 103, No. 6, 064302, 2008.
doi:10.1063/1.2891452 Google Scholar
24. Wang, J., J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, and A. E. Willner, "Terabit free-space data transmission employing orbital angular momentum multiplexing," Nature Photonics, Vol. 6, No. 7, 488-496, 2012.
doi:10.1038/nphoton.2012.138 Google Scholar
25. Bozinovic, N., Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, and S. Ramachandran, "Terabit-scale orbital angular momentum mode division multiplexing in fibers," Science, Vol. 340, No. 6140, 1545-1548, 2013.
doi:10.1126/science.1237861 Google Scholar
26. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "Circular polarized patch antenna generating orbital angular momentum," Progress In Electromagnetics Research, Vol. 148, 23-30, 2014.
doi:10.2528/PIER14050204 Google Scholar
27. Mohammadi, S. M., L. K. Daldorff, J. E. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, and B. Isham, "Orbital angular momentum in radio --- A system study," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 565-572, 2010.
doi:10.1109/TAP.2009.2037701 Google Scholar
28. Thidé, B., H. Then, J. Sj¨oholm, K. Palmer, J. Bergman, T. D. Carozzi, and R. Khamitova, "Utilization of photon orbital angular momentum in the low-frequency radio domain," Physical Review Letters, Vol. 99, No. 8, 087701, 2007.
doi:10.1103/PhysRevLett.99.087701 Google Scholar
29. Tamburini, F., E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, "Encoding many channels on the same frequency through radio vorticity: First experimental test," New Journal of Physics, Vol. 14, No. 3, 033001, 2012.
doi:10.1088/1367-2630/14/3/033001 Google Scholar
30. Rui, G., R. L. Nelson, and Q. Zhan, "Beaming photons with spin and orbital angular momentum via a dipole-coupled plasmonic spiral antenna," Optics Express, Vol. 20, No. 17, 18819-18826, 2012.
doi:10.1364/OE.20.018819 Google Scholar
31. Zhu, J., X. Cai, Y. Chen, and S. Yu, "Theoretical model for angular grating-based integrated optical vortex beam emitters," Optics Letters, Vol. 38, No. 8, 1343-1345, 2013.
doi:10.1364/OL.38.001343 Google Scholar
32. Bouchard, F., H. Mand, M. Mirhosseini, E. Karimi, and R. W. Boyd, "Achromatic orbital angular momentum generator," New Journal of Physics, Vol. 16, No. 12, 123006, 2014.
doi:10.1088/1367-2630/16/12/123006 Google Scholar
33. Marrucci, L., C. Manzo, and D. Paparo, "Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media," Physical Review Letters, Vol. 96, No. 16, 163905, 2006.
doi:10.1103/PhysRevLett.96.163905 Google Scholar
34. Gómez-Díaz, J. S. and J. Perruisseau-Carrier, "Graphene-based plasmonic switches at near infrared frequencies," Optics Express, Vol. 21, No. 13, 15490-15504, 2013.
doi:10.1364/OE.21.015490 Google Scholar