1. Liu, B., F. Wei, Q. Y. Wu, and X. W. Shi, "A tunable bandpass filter with constant absolute bandwidth," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11–12, 1596-1604, 2011.
doi:10.1163/156939311797164819 Google Scholar
2. Huang, X.-G., Q.-Y. Feng, Q.-Y. Xiang, and D.-H. Jia, "Constant absolute bandwidth tunable filter using varactor-loaded open-loop resonators," Microwave and Optical Technology Letters, Vol. 56, No. 5, 1178-1181, 2014.
doi:10.1002/mop.28285 Google Scholar
3. Jia, D.-H., Q.-Y. Feng, X.-G. Huang, and Q.-Y. Xiang, "A two-pole tunable filter with constant fractional-bandwidth characteristics," International Journal of Electronics, Vol. 101, No. 7, 983-993, 2014.
doi:10.1080/00207217.2013.805388 Google Scholar
4. Athukorala, L. and D. Budimir, "Open-loop tunable resonators and filters with constant bandwidth," IET Microw. Antennas Propag., Vol. 6, No. 7, 800-806, 2012.
doi:10.1049/iet-map.2010.0426 Google Scholar
5. Zhang, H.-L., X. Y. Zhang, and B.-J. Hu, "Tunable bandpass filters with constant absolute bandwidth," 9th International Symposium on Antennas Propagation and EM Theory (ISAPE), 1200-1203, 2010. Google Scholar
6. Yu, F. L., Y. B. Zhang, X. Y. Zhang, B. J. Hu, and X. Y. Wang, "Tunable bandpass filters with constant absolute bandwidth and high linearity," International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2012. Google Scholar
7. Makimoto, M. and M. Sagawa, "Varactor tuned bandpass filters using microstrip-line ring resonators," IEEE MTT-S Int. Microwave Symp. Dig., 411-414, 1986. Google Scholar
8. Hunter, I. C. and J. D. Rhodes, "Electronically tunable microwave bandpass filter," IEEE Trans. Microwave Theory Tech., Vol. 30, 1354-1360, 1982.
doi:10.1109/TMTT.1982.1131260 Google Scholar
9. Wang, Y.-Y., F. Wei, B. Liu, H. Xu, and X.-W. Shi, "A tunable bandpass filter with constant absolute bandwidth based on one ring resonator," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1587-1593, 2012.
doi:10.1080/09205071.2012.705137 Google Scholar
10. Kim, B.-W. and S.-W. Yun, "Varactor-tuned combline bandpass filter using step-impedance microstrip lines," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 4, 1279-1284, 2004.
doi:10.1109/TMTT.2004.825626 Google Scholar
11. Park, S.-J. and G. M. Rebeiz, "Low-loss two-pole tunable filters with three different predefined bandwidth characteristics," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 5, 1137-1148, 2008.
doi:10.1109/TMTT.2008.921638 Google Scholar
12. Zhao, Z., J. Chen, L. Yang, and K. Chen, "Three-pole tunable filters with constant bandwidth using mixed combline and split-ring resonators," IEEE Microwave and Wireless Components Letters, 1-3, 2014. Google Scholar
13. El-Tanani, M. A. and G. M. Rebeiz, "Corrugated microstrip coupled lines for constant absolute bandwidth tunable filters," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 4, 956-963, 2010.
doi:10.1109/TMTT.2010.2042517 Google Scholar
14. Zhao, Z.-Y., J. Chen, L. Yang, and K.-H. Chen, "Three-pole tunable filters with constant bandwidth using mixed combline resonators," International Journal of Electronics, 1-15, 2015. Google Scholar
15. Jia, D., Q. Feng, X. Huang, and Q. Xiang, "Tunable 3-pole bandpass filter with constant absolute bandwidth and > 60 dB rejection at desired location of Stopband," Journal of Electromagnetic Waves and Applications, 1-14, 2015. Google Scholar
16. Xiang, Q., Q Feng, X. Huang, and D. Jia, "Electrical tunable microstrip LC bandpass filters with constant bandwidth," IEEE Trans. Microwave Theory Tech, Vol. 61, No. 3, 1124-1130, 2013.
doi:10.1109/TMTT.2013.2241781 Google Scholar
17. Lee, J.-H., J.-W. Choi, X.-G. Wang, and S.-W. Yun, "Design of tunable bandpass filter using PIN diode with constant absolute bandwidth," Asia-Pacific Microwave Conference Proceedings, 191-193, 2013. Google Scholar
18. Kholodnyak, D., V. Turgaliev, and A. Baskakova, "A method to design lumped-element tunable bandpass filters with constant absolute bandwidth," Proceedings of the 44th European Microwave Conference, 335-338, 2012. Google Scholar
19. Lee, J. and K. Sarabandi, "An analytic design method for microstrip tunable filters," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 7, 1699-1706, 2008.
doi:10.1109/TMTT.2008.925569 Google Scholar
20. Kapii, K. B., "A vacartor-tunable filter with constant bandwidth and loss compensation," Microwave Journal, 105-110, 2007. Google Scholar
21. Chaudhary, G., Y. Jeong, and J. Lim, "Harmonic suppressed dual-band bandpass filter with tunable passbands," IEEE Trans. Microwave Theory Tech., Vol. 60, No. 7, 2115-2123, 2012.
doi:10.1109/TMTT.2012.2197020 Google Scholar
22. Chaudhary, G., Y. Jeong, and J. Lim, "Dual-band bandpass filter with independently tunable center frequencies and bandwidths," IEEE Trans. Microwave Theory Tech., Vol. 61, No. 1, 107-116, 2013.
doi:10.1109/TMTT.2012.2222910 Google Scholar
23. Makimoto, M. and S. Yamashita, Microwave Resonators and Filters for Wireless Communication: Theory, Design and Application, Springer-Verlag, Berlin Heidelberg, 2001.
doi:10.1007/978-3-662-04325-7_5
24. Hong, J.-S., Microstrip Filters for RF Microwave Applications, 3rd Edition, J. Wiley & Sons, 2011.
doi:10.1002/9780470937297
25. Matthaei, G. L., E. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks, Coupling Structures, Artech House, Norwood, MA, USA, 1980.