Vol. 57
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-04-29
A Miniaturized Tunable Bandpass Filter with Constant Fractional Bandwidth
By
Progress In Electromagnetics Research C, Vol. 57, 89-97, 2015
Abstract
This paper presents a miniaturized tunable bandpass filter, consisting of two coaxial dielectric resonators and a pair of parallel-coupled lines. A coaxial dielectric resonators and a microstrip line form a new step-impedance resonator (SIR), which is different from a conventional SIR. Varactor diodes are connected to SIRs to tune the center frequency. The gap between parallel-coupled lines controls the inter-stage coupling coefficient. Lumped inductors used for coupling to I/O ports can reduce design complexity. The variations of coupling coefficient and external quality factor with tuning frequency are analyzed using HFSS software. A appropriate coupling coefficient which satisfies with constant fractional bandwidth within the tuning range is available. A tunable filter has been made of dielectric ceramics with dielectric constant of 38, fabricated on dielectric substrate and measured using Networks analyzer. Center frequencies vary from 0.43 GHz to 0.78 GHz, 3 dB fractional bandwidth from 6.4% to 6.8% when bias voltages are applied from 0 V to 10 V. The measured results validate the approach and agree with the simulation.
Citation
Liangzu Cao Guangwen Li Jian Hu Lixia Yin , "A Miniaturized Tunable Bandpass Filter with Constant Fractional Bandwidth," Progress In Electromagnetics Research C, Vol. 57, 89-97, 2015.
doi:10.2528/PIERC15032701
http://www.jpier.org/PIERC/pier.php?paper=15032701
References

1. Liu, B., F. Wei, Q. Y. Wu, and X. W. Shi, "A tunable bandpass filter with constant absolute bandwidth," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11–12, 1596-1604, 2011.
doi:10.1163/156939311797164819

2. Huang, X.-G., Q.-Y. Feng, Q.-Y. Xiang, and D.-H. Jia, "Constant absolute bandwidth tunable filter using varactor-loaded open-loop resonators," Microwave and Optical Technology Letters, Vol. 56, No. 5, 1178-1181, 2014.
doi:10.1002/mop.28285

3. Jia, D.-H., Q.-Y. Feng, X.-G. Huang, and Q.-Y. Xiang, "A two-pole tunable filter with constant fractional-bandwidth characteristics," International Journal of Electronics, Vol. 101, No. 7, 983-993, 2014.
doi:10.1080/00207217.2013.805388

4. Athukorala, L. and D. Budimir, "Open-loop tunable resonators and filters with constant bandwidth," IET Microw. Antennas Propag., Vol. 6, No. 7, 800-806, 2012.
doi:10.1049/iet-map.2010.0426

5. Zhang, H.-L., X. Y. Zhang, and B.-J. Hu, "Tunable bandpass filters with constant absolute bandwidth," 9th International Symposium on Antennas Propagation and EM Theory (ISAPE), 1200-1203, 2010.

6. Yu, F. L., Y. B. Zhang, X. Y. Zhang, B. J. Hu, and X. Y. Wang, "Tunable bandpass filters with constant absolute bandwidth and high linearity," International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2012.

7. Makimoto, M. and M. Sagawa, "Varactor tuned bandpass filters using microstrip-line ring resonators," IEEE MTT-S Int. Microwave Symp. Dig., 411-414, 1986.

8. Hunter, I. C. and J. D. Rhodes, "Electronically tunable microwave bandpass filter," IEEE Trans. Microwave Theory Tech., Vol. 30, 1354-1360, 1982.
doi:10.1109/TMTT.1982.1131260

9. Wang, Y.-Y., F. Wei, B. Liu, H. Xu, and X.-W. Shi, "A tunable bandpass filter with constant absolute bandwidth based on one ring resonator," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1587-1593, 2012.
doi:10.1080/09205071.2012.705137

10. Kim, B.-W. and S.-W. Yun, "Varactor-tuned combline bandpass filter using step-impedance microstrip lines," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 4, 1279-1284, 2004.
doi:10.1109/TMTT.2004.825626

11. Park, S.-J. and G. M. Rebeiz, "Low-loss two-pole tunable filters with three different predefined bandwidth characteristics," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 5, 1137-1148, 2008.
doi:10.1109/TMTT.2008.921638

12. Zhao, Z., J. Chen, L. Yang, and K. Chen, "Three-pole tunable filters with constant bandwidth using mixed combline and split-ring resonators," IEEE Microwave and Wireless Components Letters, 1-3, 2014.

13. El-Tanani, M. A. and G. M. Rebeiz, "Corrugated microstrip coupled lines for constant absolute bandwidth tunable filters," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 4, 956-963, 2010.
doi:10.1109/TMTT.2010.2042517

14. Zhao, Z.-Y., J. Chen, L. Yang, and K.-H. Chen, "Three-pole tunable filters with constant bandwidth using mixed combline resonators," International Journal of Electronics, 1-15, 2015.

15. Jia, D., Q. Feng, X. Huang, and Q. Xiang, "Tunable 3-pole bandpass filter with constant absolute bandwidth and > 60 dB rejection at desired location of Stopband," Journal of Electromagnetic Waves and Applications, 1-14, 2015.

16. Xiang, Q., Q Feng, X. Huang, and D. Jia, "Electrical tunable microstrip LC bandpass filters with constant bandwidth," IEEE Trans. Microwave Theory Tech, Vol. 61, No. 3, 1124-1130, 2013.
doi:10.1109/TMTT.2013.2241781

17. Lee, J.-H., J.-W. Choi, X.-G. Wang, and S.-W. Yun, "Design of tunable bandpass filter using PIN diode with constant absolute bandwidth," Asia-Pacific Microwave Conference Proceedings, 191-193, 2013.

18. Kholodnyak, D., V. Turgaliev, and A. Baskakova, "A method to design lumped-element tunable bandpass filters with constant absolute bandwidth," Proceedings of the 44th European Microwave Conference, 335-338, 2012.

19. Lee, J. and K. Sarabandi, "An analytic design method for microstrip tunable filters," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 7, 1699-1706, 2008.
doi:10.1109/TMTT.2008.925569

20. Kapii, K. B., "A vacartor-tunable filter with constant bandwidth and loss compensation," Microwave Journal, 105-110, 2007.

21. Chaudhary, G., Y. Jeong, and J. Lim, "Harmonic suppressed dual-band bandpass filter with tunable passbands," IEEE Trans. Microwave Theory Tech., Vol. 60, No. 7, 2115-2123, 2012.
doi:10.1109/TMTT.2012.2197020

22. Chaudhary, G., Y. Jeong, and J. Lim, "Dual-band bandpass filter with independently tunable center frequencies and bandwidths," IEEE Trans. Microwave Theory Tech., Vol. 61, No. 1, 107-116, 2013.
doi:10.1109/TMTT.2012.2222910

23. Makimoto, M. and S. Yamashita, Microwave Resonators and Filters for Wireless Communication: Theory, Design and Application, Springer-Verlag, Berlin Heidelberg, 2001.
doi:10.1007/978-3-662-04325-7_5

24. Hong, J.-S., Microstrip Filters for RF Microwave Applications, 3rd Edition, J. Wiley & Sons, 2011.
doi:10.1002/9780470937297

25. Matthaei, G. L., E. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks, Coupling Structures, Artech House, Norwood, MA, USA, 1980.