Vol. 42
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-06-10
Analysis on the Azimuth Shift of a Moving Target in SAR Image
By
Progress In Electromagnetics Research M, Vol. 42, 121-134, 2015
Abstract
As we know, a moving target's azimuth shift in SAR image is proportional to the projected velocity of its across-track velocity in the slant-range plane. Therefore, we can relocate the moving target in SAR image after estimating its velocity. However, when Doppler ambiguity occurs due to the limitation of the SAR system's pulse repetition frequency (PRF), this relationship will not hold any more, in this case, we cannot relocate the moving target to the right position. The Doppler spectrum of a moving target with arbitrary velocity may entirely situate in a PRF band or spans in two neighboring PRF bands. In this paper, we conduct a detailed theoretical analysis on the moving target's azimuth shift for these two scenarios. According to the derived formulas, one can relocate a moving target with arbitrary velocity to the right position no matter Doppler ambiguity occurs or not. Simulated data are processed to validate the analysis.
Citation
Jiefang Yang, and Yunhua Zhang, "Analysis on the Azimuth Shift of a Moving Target in SAR Image," Progress In Electromagnetics Research M, Vol. 42, 121-134, 2015.
doi:10.2528/PIERM15040202
References

1. Cumming, I. G. and F. H. Wong, Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, 2005.

2. Jao, J. K., "Theory of synthetic aperture radar imaging of a moving target," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 9, 1984-1992, 2001.
doi:10.1109/36.951089        Google Scholar

3. Zhang, Y., W. Zhai, X. Zhang, X. Shi, X. Gu, and Y. Deng, "Ground moving train imaging by Ku-band radar with two receiving channels," Progress In Electromagnetics Research, Vol. 130, 493-512, 2012.
doi:10.2528/PIER12060201        Google Scholar

4. Yang, J., C. Liu, and Y. F. Wang, "Imaging and parameter estimation of fast-moving targets with single-antenna SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 2, 529-533, 2014.
doi:10.1109/LGRS.2013.2271691        Google Scholar

5. Yang, J., C. Liu, and Y. F. Wang, "Detection and imaging of ground moving targets with real SAR data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 2, 920-932, 2015.
doi:10.1109/TGRS.2014.2330456        Google Scholar

6. Mao, X., D.-Y. Zhu, and Z.-D. Zhu, "Signatures of moving target in polar format spotlight SAR image," Progress In Electromagnetics Research, Vol. 92, 47-64, 2009.
doi:10.2528/PIER09030908        Google Scholar

7. Zhang, Y., X. Shi, X. Gu, W. Zhai, X. Kang, Y. Deng, D. Li, X. Dong, J. Yang, Q. Yang, Q. Yang, Y. Tang, X. Zhang, and J. Jiang, "Introduction to the researches on radar conducted in MIRSL/CAS," PIERS Proceedings, 454-460, Guangzhou, Aug. 25-28, 2014.        Google Scholar

8. Chiu, S. and C. Livingstone, "A comparison of displaced phase centre antenna and along-track interferometry techniques for RADARSAT-2 ground moving target indication," Canadian Journal of Remote Sensing, Vol. 31, 37-51, 2005.
doi:10.5589/m04-052        Google Scholar

9. Cerutti-Maori, D. and I. Sikaneta, "A generalization of DPCA processing for multichannel SAR/GMTI radars," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 1, 560-572, 2013.
doi:10.1109/TGRS.2012.2201260        Google Scholar

10. Moccia, A. and G. Rufino, "Spaceborne along-track SAR interferometry: Performance analysis and mission scenarios," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 1, 199-213, 2001.
doi:10.1109/7.913679        Google Scholar

11. Romeiser, R., H. Breit, M. Eineder, and H. Runge, "Demonstration of current measurements from space by along-track SAR interferometry with SRTM data," 2002 IEEE International Geoscience and Remote Sensing Symposium, 2002.        Google Scholar

12. Budillon, A., A. Evangelista, and G. Schirinzi, "GLRT detection of moving targets via multibaseline along-track interferometric SAR systems," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 3, 348-352, 2012.
doi:10.1109/LGRS.2011.2168381        Google Scholar

13. Tian, B., D.-Y. Zhu, and Z.-D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.
doi:10.2528/PIER10120107        Google Scholar

14. Dipietro, R. C., "Extended factor space-time processing for airborne radar system," The Twenty-Sixth Asilomar Conference on Signals, Systems and Computers, 1992.        Google Scholar

15. Chen, H. C. and C. D. McGillem, "Target motion compensation by spectrum shifting in synthetic aperture radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, No. 3, 895-901, 1992.
doi:10.1109/7.256313        Google Scholar

16. Moreira, J. R. and W. Keydel, "A new MTI-SAR approach using the reflectivity displacement method," IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 5, 1238-1244, 1995.
doi:10.1109/36.469488        Google Scholar

17. Lv, G., J. Wang, and X. Liu, "Ground moving target indication in SAR images by symmetric defocusing," IEEE Geoscience and Remote Sensing Letters, Vol. 10, No. 2, 241-245, 2013.
doi:10.1109/LGRS.2012.2200232        Google Scholar

18. Perry, R. P., R. C. DiPietro, and R. L. Fante, "SAR imaging of moving targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 1, 188-200, 1999.
doi:10.1109/7.745691        Google Scholar

19. Zhou, F., R. Wu, M. Xing, and Z. Bao, "Approach for single channel SAR ground moving target imaging and motion parameter estimation," IET Radar Sonar and Navigation, Vol. 1, No. 1, 59-66, 2007.
doi:10.1049/iet-rsn:20060040        Google Scholar

20. Zhu, D., Y. Li, and Z. Zhu, "A keystone transform without interpolation for SAR ground moving-target imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 1, 18-22, 2007.
doi:10.1109/LGRS.2006.882147        Google Scholar

21. Li, G., X. G. Xia, and Y. N. Peng, "Doppler keystone transform: an approach suitable for parallel implementation of SAR moving target imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 4, 573-577, 2008.
doi:10.1109/LGRS.2008.2000621        Google Scholar

22. Yang, J. F. and Y. H. Zhang, "Novel compressive sensing-based Dechirp-Keystone algorithm for synthetic aperture radar imaging of moving target," IET Radar Sonar and Navigation, Vol. 9, No. 5, 509-518, 2015.
doi:10.1049/iet-rsn.2014.0306        Google Scholar

23. Yang, J. and Y. Zhang, "A novel Keystone transform based algorithm for moving target imaging with Radon transform and fractional Fourier transform involved," PIERS Proceedings, 1406-1410, Guangzhou, Aug. 25-28, 2014.        Google Scholar

24. Kong, Y. K., B. L. Cho, and Y. S. Kim, "Ambiguity-free Doppler centroid estimation technique for airborne SAR using the Radon transform," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 4, 715-721, 2005.
doi:10.1109/TGRS.2005.843955        Google Scholar

25. Cumming, I. G. and S. Li, "Improved slope estimation for SAR Doppler ambiguity resolution," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 3, 707-718, 2006.
doi:10.1109/TGRS.2005.861925        Google Scholar

26. Zhu, S., G. Liao, B. Liu, and Y. Qu, "New approach for SAR Doppler ambiguity resolution in compressed range time and scaled azimuth time domain," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 4, 3026-3039, 2011.
doi:10.1109/TAES.2011.6034686        Google Scholar

27. Barbarossa, S. and A. Farina, "Detection and imaging of moving objects with synthetic aperture radar. Part 2: Joint time-frequency analysis by Wigner-Ville distribution," IEE Radar and Signal Processing, 89-97, 1992.
doi:10.1049/ip-f-2.1992.0011        Google Scholar

28. Sun, H., G. S. Liu, H. Gu, and W. M. Su, "Application of the fractional Fourier transform to moving target detection in airborne SAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, No. 4, 1416-1424, 2002.
doi:10.1109/TAES.2002.1145767        Google Scholar

29. Djurovic, I., T. Thayaparan, and L. J. Stankovic, "SAR imaging of moving targets using polynomial Fourier transform," IET Signal Processing, Vol. 2, 237-246, 2008.
doi:10.1049/iet-spr:20070114        Google Scholar

30. Zhang, X. P., G. S. Liao, S. Q. Zhu, C. Zeng, and Y. X. Shu, "Geometry-information-aided efficient radial velocity estimation for moving target imaging and location based on Radon transform," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 2, 1105-1117, 2015.
doi:10.1109/TGRS.2014.2334322        Google Scholar

31. Zhu, S. Q., G. S. Liao, Y. Qu, Z. G. Zhou, and X. Y. Liu, "Ground moving targets imaging algorithm for synthetic aperture radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 1, 462-477, 2011.
doi:10.1109/TGRS.2010.2053848        Google Scholar

32. Sun, G. C., M. D. Xing, X. G. Xia, Y. R. Wu, and Z. Bao, "Robust ground moving-target imaging using Deramp-Keystone processing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 2, 966-982, 2013.
doi:10.1109/TGRS.2012.2204889        Google Scholar