1. Cumming, I. G. and F. H. Wong, Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, 2005.
2. Jao, J. K., "Theory of synthetic aperture radar imaging of a moving target," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 9, 1984-1992, 2001.
doi:10.1109/36.951089 Google Scholar
3. Zhang, Y., W. Zhai, X. Zhang, X. Shi, X. Gu, and Y. Deng, "Ground moving train imaging by Ku-band radar with two receiving channels," Progress In Electromagnetics Research, Vol. 130, 493-512, 2012.
doi:10.2528/PIER12060201 Google Scholar
4. Yang, J., C. Liu, and Y. F. Wang, "Imaging and parameter estimation of fast-moving targets with single-antenna SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 2, 529-533, 2014.
doi:10.1109/LGRS.2013.2271691 Google Scholar
5. Yang, J., C. Liu, and Y. F. Wang, "Detection and imaging of ground moving targets with real SAR data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 2, 920-932, 2015.
doi:10.1109/TGRS.2014.2330456 Google Scholar
6. Mao, X., D.-Y. Zhu, and Z.-D. Zhu, "Signatures of moving target in polar format spotlight SAR image," Progress In Electromagnetics Research, Vol. 92, 47-64, 2009.
doi:10.2528/PIER09030908 Google Scholar
7. Zhang, Y., X. Shi, X. Gu, W. Zhai, X. Kang, Y. Deng, D. Li, X. Dong, J. Yang, Q. Yang, Q. Yang, Y. Tang, X. Zhang, and J. Jiang, "Introduction to the researches on radar conducted in MIRSL/CAS," PIERS Proceedings, 454-460, Guangzhou, Aug. 25-28, 2014. Google Scholar
8. Chiu, S. and C. Livingstone, "A comparison of displaced phase centre antenna and along-track interferometry techniques for RADARSAT-2 ground moving target indication," Canadian Journal of Remote Sensing, Vol. 31, 37-51, 2005.
doi:10.5589/m04-052 Google Scholar
9. Cerutti-Maori, D. and I. Sikaneta, "A generalization of DPCA processing for multichannel SAR/GMTI radars," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 1, 560-572, 2013.
doi:10.1109/TGRS.2012.2201260 Google Scholar
10. Moccia, A. and G. Rufino, "Spaceborne along-track SAR interferometry: Performance analysis and mission scenarios," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 1, 199-213, 2001.
doi:10.1109/7.913679 Google Scholar
11. Romeiser, R., H. Breit, M. Eineder, and H. Runge, "Demonstration of current measurements from space by along-track SAR interferometry with SRTM data," 2002 IEEE International Geoscience and Remote Sensing Symposium, 2002. Google Scholar
12. Budillon, A., A. Evangelista, and G. Schirinzi, "GLRT detection of moving targets via multibaseline along-track interferometric SAR systems," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 3, 348-352, 2012.
doi:10.1109/LGRS.2011.2168381 Google Scholar
13. Tian, B., D.-Y. Zhu, and Z.-D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.
doi:10.2528/PIER10120107 Google Scholar
14. Dipietro, R. C., "Extended factor space-time processing for airborne radar system," The Twenty-Sixth Asilomar Conference on Signals, Systems and Computers, 1992. Google Scholar
15. Chen, H. C. and C. D. McGillem, "Target motion compensation by spectrum shifting in synthetic aperture radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, No. 3, 895-901, 1992.
doi:10.1109/7.256313 Google Scholar
16. Moreira, J. R. and W. Keydel, "A new MTI-SAR approach using the reflectivity displacement method," IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 5, 1238-1244, 1995.
doi:10.1109/36.469488 Google Scholar
17. Lv, G., J. Wang, and X. Liu, "Ground moving target indication in SAR images by symmetric defocusing," IEEE Geoscience and Remote Sensing Letters, Vol. 10, No. 2, 241-245, 2013.
doi:10.1109/LGRS.2012.2200232 Google Scholar
18. Perry, R. P., R. C. DiPietro, and R. L. Fante, "SAR imaging of moving targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 1, 188-200, 1999.
doi:10.1109/7.745691 Google Scholar
19. Zhou, F., R. Wu, M. Xing, and Z. Bao, "Approach for single channel SAR ground moving target imaging and motion parameter estimation," IET Radar Sonar and Navigation, Vol. 1, No. 1, 59-66, 2007.
doi:10.1049/iet-rsn:20060040 Google Scholar
20. Zhu, D., Y. Li, and Z. Zhu, "A keystone transform without interpolation for SAR ground moving-target imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 1, 18-22, 2007.
doi:10.1109/LGRS.2006.882147 Google Scholar
21. Li, G., X. G. Xia, and Y. N. Peng, "Doppler keystone transform: an approach suitable for parallel implementation of SAR moving target imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 4, 573-577, 2008.
doi:10.1109/LGRS.2008.2000621 Google Scholar
22. Yang, J. F. and Y. H. Zhang, "Novel compressive sensing-based Dechirp-Keystone algorithm for synthetic aperture radar imaging of moving target," IET Radar Sonar and Navigation, Vol. 9, No. 5, 509-518, 2015.
doi:10.1049/iet-rsn.2014.0306 Google Scholar
23. Yang, J. and Y. Zhang, "A novel Keystone transform based algorithm for moving target imaging with Radon transform and fractional Fourier transform involved," PIERS Proceedings, 1406-1410, Guangzhou, Aug. 25-28, 2014. Google Scholar
24. Kong, Y. K., B. L. Cho, and Y. S. Kim, "Ambiguity-free Doppler centroid estimation technique for airborne SAR using the Radon transform," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 4, 715-721, 2005.
doi:10.1109/TGRS.2005.843955 Google Scholar
25. Cumming, I. G. and S. Li, "Improved slope estimation for SAR Doppler ambiguity resolution," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 3, 707-718, 2006.
doi:10.1109/TGRS.2005.861925 Google Scholar
26. Zhu, S., G. Liao, B. Liu, and Y. Qu, "New approach for SAR Doppler ambiguity resolution in compressed range time and scaled azimuth time domain," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 4, 3026-3039, 2011.
doi:10.1109/TAES.2011.6034686 Google Scholar
27. Barbarossa, S. and A. Farina, "Detection and imaging of moving objects with synthetic aperture radar. Part 2: Joint time-frequency analysis by Wigner-Ville distribution," IEE Radar and Signal Processing, 89-97, 1992.
doi:10.1049/ip-f-2.1992.0011 Google Scholar
28. Sun, H., G. S. Liu, H. Gu, and W. M. Su, "Application of the fractional Fourier transform to moving target detection in airborne SAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, No. 4, 1416-1424, 2002.
doi:10.1109/TAES.2002.1145767 Google Scholar
29. Djurovic, I., T. Thayaparan, and L. J. Stankovic, "SAR imaging of moving targets using polynomial Fourier transform," IET Signal Processing, Vol. 2, 237-246, 2008.
doi:10.1049/iet-spr:20070114 Google Scholar
30. Zhang, X. P., G. S. Liao, S. Q. Zhu, C. Zeng, and Y. X. Shu, "Geometry-information-aided efficient radial velocity estimation for moving target imaging and location based on Radon transform," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 2, 1105-1117, 2015.
doi:10.1109/TGRS.2014.2334322 Google Scholar
31. Zhu, S. Q., G. S. Liao, Y. Qu, Z. G. Zhou, and X. Y. Liu, "Ground moving targets imaging algorithm for synthetic aperture radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 1, 462-477, 2011.
doi:10.1109/TGRS.2010.2053848 Google Scholar
32. Sun, G. C., M. D. Xing, X. G. Xia, Y. R. Wu, and Z. Bao, "Robust ground moving-target imaging using Deramp-Keystone processing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 2, 966-982, 2013.
doi:10.1109/TGRS.2012.2204889 Google Scholar