Vol. 48
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-04-20
A Passive Suppressing Jamming Method for FMCW SAR Based on Micromotion Modulation
By
Progress In Electromagnetics Research M, Vol. 48, 37-44, 2016
Abstract
The frequency-modulated continuous wave (FMCW) synthetic aperture radar (SAR) has the properties of compact size, lightweight, low cost and low power dissipation, which provides great potential in the application of small platforms such as unmanned aerial vehicle (UAV). The imaging characteristics of rotary target for FMCW SAR are analysed based on the construction of echo signal model. Further, a passive suppressing jamming method for FMCW SAR based on micromotion modulation is proposed. This method makes use of rotary corner reflector to form jamming strips in range and azimuth, and then the target screened is protected effectively. The choice of parameters of rotary corner reflectors is discussed in detail. Finally, some simulations are given to validate the theoretical derivation and the effectiveness of method.
Citation
Jia-Bing Yan, Ying Liang, Yongan Chen, Qun Zhang, and Li Sun, "A Passive Suppressing Jamming Method for FMCW SAR Based on Micromotion Modulation," Progress In Electromagnetics Research M, Vol. 48, 37-44, 2016.
doi:10.2528/PIERM15042807
References

1. Meta, A. and P. Hoogeboom, "Development of signal processing algorithms for high resolution airborne millimeter wave FMCW SAR," Proc. IEEE Int. Radar Conf.'05, 326-331, Arlington, U.S.A, 2005.

2. Meta, A., P. Hoogeboom, and L. P. Ligthart, "Signal processing for FMCW SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 11, 3519-3532, 2007.
doi:10.1109/TGRS.2007.906140

3. Wang, R., Y. Luo, Y. Deng, et al. "Motion compensation for high-resolution automobile FMCW SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 10, No. 5, 1157-1161, 2013.
doi:10.1109/LGRS.2012.2234435

4. Liu, Y., Y. Deng, R. Wang, et al. "Efficient and precise frequency-modulated continuous wave synthetic aperture radar raw signal simulation approach for extended scenes," IET Radar Sonar and Navigation, Vol. 6, No. 9, 858-866, 2012.
doi:10.1049/iet-rsn.2011.0288

5. Adve, R., "Bistatic FMCW SAR signal model and imaging approach," IEEE Transactions on Aerospace and Electronics, Vol. 49, No. 3, 2017-2028, 2013.
doi:10.1109/TAES.2013.6558035

6. Edrich, M., "Design overview and flight test results of the miniaturized SAR sensor MISAR," Proc. EuRAD'04, 205-208, Amsterdam, The Netherlands, 2004.

7. Duersch, M. I., "BYU. Micro-SAR: A very small low-power LFM-CW synthetic aperture radar,", Brigham Young University, 2004.

8. Wang, R., O. Loffeld, H. Nies, et al. "Focus FMCW sar data using the wavenumber domain algorithm," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 4, 2109-2118, 2010.
doi:10.1109/TGRS.2009.2034368

9. Sun, G.-C., X.-R. Bai, F. Zhou, et al. "A new passive barrage jamming method for SAR," Journal of Electronics & Information Technology, Vol. 31, No. 3, 610-613, 2009 (in Chinese).

10. Wu, X.-F., D.-H. Dai, X.-S. Wang, et al. "A novel method of active jamming for SAR based on micro motion modulation," Acta Electronica Sinica, Vol. 38, No. 4, 954-958, 2010 (in Chinese).

11. Wu, X.-F., Y. Liu, X.-S. Wang, et al. "Analysis of SAR imaging characteristics of targets with rotational micro-motion," Journal of Astronautics, Vol. 31, No. 4, 1181-1189, 2010 (in Chinese).

12. Rigling, B. D., "Image-quality focusing of rotary SAR targets," IEEE Geosci. Remote Sens. Lett., Vol. 5, No. 4, 750-754, Oct. 2008.
doi:10.1109/LGRS.2008.2004792