Vol. 58
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-07-11
SRR Inspired Microstrip Patch Antenna Array
By
Progress In Electromagnetics Research C, Vol. 58, 89-96, 2015
Abstract
This paper presents a novel approach for bandwidth enhancement and gain improvement of a microstrip patch antenna array for IEEE 802.16a 5.8 GHz Wi-MAX applications. A split ring resonator (SRR) has been designed to load the microstrip patch antenna array. The unloaded antenna array resonates at 5.8 GHz with gain of 4.3 dBi and bandwidth of 425 MHz, whereas when loaded with split ring resonator the gain approaches to 5.7 dBi and bandwidth increases to 610 MHz which corresponds to bandwidth enhancement of 3%. The electrical dimension of the patch is 0.23λ x 0.3λ.
Citation
Chirag Arora, Shyam Sundar Pattnaik, and Rudra Narayan Baral, "SRR Inspired Microstrip Patch Antenna Array," Progress In Electromagnetics Research C, Vol. 58, 89-96, 2015.
doi:10.2528/PIERC15052501
References

1. Singh, H., H. L. Sneha, and R. M. Jha, "Mutual coupling in phased arrays: A review," Hindawi International Journal of Antennas and Propagation, Vol. 2013, 348123, 2013.

2. Dandekar, K. R., H. Ling, and G. Xu, "Effect of mutual coupling on direction finding in smart antenna applications," Electronics Letters, Vol. 36, No. 22, 1889-1891, 2000.
doi:10.1049/el:20001309

3. Ying, Z. and D. Zhang, "Study of the mutual coupling, correlation efficiency of two PIFA antennas on a small ground plane," Proc. of IEEE Antennas Propagation Society, Vol. 3B, 305-308, Washington, DC, Jul. 2005.

4. Wong, K. L., J. H. Chou, S. W. Su, and C. M. Su, "Isolation between GSM/DCS and WLAN antennas in a PDA phone," Microw. Opt. Technol. Lett., Vol. 45, No. 4, 347-352, May 2005.
doi:10.1002/mop.20820

5. Ismaiel, A. M. and A. B. Abdel Rahman, "A meander shaped defected ground structure (DGS) for reduction of mutual coupling between microstrip antennas," 31st National Radio Science Conference (NRSC), 21-26, Cairo, Apr. 2014.

6. Mukherjee, B., S. K. Parui, and S. Das, "Mutual coupling reduction of microstrip antenna arrays using rectangular split ring shaped defected ground structure," International Conference on Communications, Devices and Intelligent Systems (CODIS), 202-204, Kolkata, Dec. 2012.

7. Ou Yang, J., F. Yang, and Z. M. Wang, "Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application," IEEE Antennas Wireless Propagation Letters, Vol. 10, 310-312, 2011.
doi:10.1109/LAWP.2011.2140310

8. Ebadi, S. and A. Semnani, "Mutual coupling reduction in waveguide-slot-array antennas using electromagnetic bandgap (EBG) structures," IEEE Antennas and Propagation Magazine, Vol. 56, No. 3, 68-79, Jun. 2014.
doi:10.1109/MAP.2014.6867683

9. Assimonis, S. D., T. V. Yioultsis, and C. S. Antonopoulos, "Design and optimization of uniplanar EBG structures for low profile antenna applications and mutual coupling reduction," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 10, 4944-4949, Oct. 2012.
doi:10.1109/TAP.2012.2210178

10. Yang, F. and Y. Rahmat Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983

11. Minz, L. and R. Garg, "Reduction of mutual coupling between closely spaced PIFAs," Electronics Letters, Vol. 46, No. 6, 392-394, 2010.
doi:10.1049/el.2010.3275

12. Ibraheam, M., A. Krauss, S. Irteza, and A. H. Matthias, "Reduction of mutual coupling in compact antenna arrays using element tilting," Proceedings of Microwave Conference (GeMIC), 1-4, Aachen, Germany, Dec. 2014.

13. Dossche, S., S. Blanch, and J. Romeu, "Three different ways to decorrelate two closely spaced monopoles for MIMO applications," IEEE Proceedings of International Conference on Wireless Communication and Applied Compuation in Electromagnetism, 849-852, Apr. 2005.

14. Liu, Z., "Suppression of the mutual coupling between microstrip antenna arrays using negative permeability metamaterial on LTCC substrate," IEEE Antennas and Propagation Symposium Society, 1258-1259, 2013.

15. Pozar, D. M., Microwave Engineering, John Wiley & Sons, New York, NY, USA, 2008.

16. Bilotti, F., A. Toscano, L. Vegni, K. Aydin, K. M. Alici, and E. Ozbay, "Equivalent circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2865-2873, Dec. 2007.
doi:10.1109/TMTT.2007.909611

17. Garg, R., P. Bhartia, I. Bhal, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Boston, UK, 2001.

18. Mohan, S. S., "Design, modeling and optimization of on-chip inductor and transformer circuits,", Ph.D. Dissertation, Stanford University, 1999.

19. Joshi, J. G., S. S. Pattnaik, and S. Devi, "Geo-textile based metamaterial loaded wearable microstrip patch antenna," International Journal of Microwave and Optical Technology, Vol. 8, No. 1, 25-33, Jan. 2013.