1. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, 1998.
doi:10.1002/9783527618156
2. Alyones, S., C. W. Bruce, and A. K. Buin, "Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire," IEEE Trans. Antennas Propag., Vol. 55, 1856-1861, 2007.
doi:10.1109/TAP.2007.898579 Google Scholar
3. Waterman, P. C., "Scattering, absorption and extinction by thin fibers," J. opt. Soc. Amer., Vol. 22, No. 11, 2430-2441, 2005.
doi:10.1364/JOSAA.22.002430 Google Scholar
4. Alyones, S. and C. W. Bruce, "Electromagnetic scattering by finite conducting fiber: Limitation of a previous published code," Journal of Electromagnetic Waves And Applications, Vol. 25, No. 7, 1021-1030, 2011.
doi:10.1163/156939311795253948 Google Scholar
5. Bruce, C. W. and S. Alyones, "Extinction efficiencies for metallic fibers in the infrared," Applied Optics, Vol. 48, 5095-5098, 2009.
doi:10.1364/AO.48.005095 Google Scholar
6. Bruce, C. W. and S. Alyones, "Visible and infrared optical properties of stacked cone graphitic microtubes," Applied Optics, Vol. 51, No. 16, 3250, 2012.
doi:10.1364/AO.51.003250 Google Scholar
7. Bruce, C. W., A. V. Jelinek, S. Wu, S. Alyones, and Q. S. Wang, "Millimeter-wavelength investigation of fibrous aerosol absorption and scattering properties," Applied Optics, Vol. 43, 6648-6655, 2004.
doi:10.1364/AO.43.006648 Google Scholar
8. Willis, T. M. and H. Weil, "Disc scattering and absorption by an improved computational method," Applied Optics, Vol. 26, No. 18, 1987.
doi:10.1364/AO.26.003987 Google Scholar
9. Shepherd, J. W. and A. R. Holt, "The scattering of electromagnetic radiation from finite dielectric circular cylinders," J. Phys. A, Vol. 16, 65, 1983. Google Scholar
10. Alyones, S., "Electromagnetically induced absorption in metamaterials in the infrared frequency," Progress In Electromagnetics Research Letters, Vol. 47, 19-25, 2014.
doi:10.2528/PIERL14050501 Google Scholar
11. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, No. 4, 1103-1107, 2010.
doi:10.1021/nl902621d Google Scholar
12. Arif, E. Ç., A. Artar, M. Turkmen, A. A. Yanik, and H. Altug, "Plasmon induced transparency in cascaded π-shaped metamaterials," Optics Express, Vol. 19, No. 23, 22607-22618, 2011.
doi:10.1364/OE.19.022607 Google Scholar
13. Li, Z., Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, "Manipulating the plasmon-induced transparency in terahertz metamaterials," Optics Express, Vol. 19, No. 9, 8912-8919, 2011.
doi:10.1364/OE.19.008912 Google Scholar
14. Lu, Y., J. Y. Rhee, W. H. Jang, and Y. P. Lee, "Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance," Optics Express, Vol. 18, No. 20, 20912-20917, 2010.
doi:10.1364/OE.18.020912 Google Scholar
15. Xu, H., Y. Lu, Y. P. Lee, and B. S. Ham, "Studies of electromagnetically induced transparency in metamaterials," Optics Express, Vol. 18, No. 17, 17736-17747, 2010.
doi:10.1364/OE.18.017736 Google Scholar
16. Dong, Z.-G., H. Liu, M.-X. Xu, T. Li, S.-M.Wang, S.-N. Zhu, and X. Zhang, "Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars," Optics Express, Vol. 18, No. 17, 18229-18234, 2010.
doi:10.1364/OE.18.018229 Google Scholar
17. Zhang, J., S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, "Electromagnetically induced transparency in metamaterials at near-infrared frequency," Optics Express, Vol. 18, No. 16, 17187-17192, 2010.
doi:10.1364/OE.18.017187 Google Scholar
18. Liu, C., Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature, Vol. 409, No. 6819, 490-493, 2001.
doi:10.1038/35054017 Google Scholar
19. Phillips, D. F., A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of light in atomic vapor," Phys. Rev. Lett., Vol. 86, No. 5, 783-786, 2001.
doi:10.1103/PhysRevLett.86.783 Google Scholar
20. Anker, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonic nanosensors," Nat. Mater., Vol. 7, No. 6, 442-453, 2008.
doi:10.1038/nmat2162 Google Scholar
21. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, No. 4, 1103-1107, 2010.
doi:10.1021/nl902621d Google Scholar
22. Jin, X.-R., J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K.W. Kim, H. S. Cheong, and W. H. Jang, "Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling," Optics Express, Vol. 19, No. 22, 21652-21657, 2011.
doi:10.1364/OE.19.021652 Google Scholar
23. Wang, J., B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, "A novel planar metamaterial design for electromagnetically induced transparency and slow light," Optics Express, Vol. 21, No. 21, 25159-25166, 2013.
doi:10.1364/OE.21.025159 Google Scholar
24. Ibraheem, A. I. A.-N., C. Jansen, and M. Koch, "High Q-factor metasurfaces based on miniaturized asymmetric single split resonators," Appl. Phys. Lett., Vol. 94, 153505, 2009. Google Scholar
25. Alyones, S., A. V. Jelinek, M. Granado, and C. W. Bruce, "Design of metaparticles as sharp frequency-selective obscurant aerosols," Progress In Electromagnetics Research M, Vol. 30, 141-152, 2013.
doi:10.2528/PIERM13020706 Google Scholar
26. CST Microwave Studio, Sonnet Software Inc., http://www.CST.com.