Vol. 42
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-06-24
Selective-Band Metaparticle Based on Bright-Bright Mode Coupling for Obscuration Applications
By
Progress In Electromagnetics Research M, Vol. 42, 159-167, 2015
Abstract
In this paper, we propose a planar metamaterial particle that consists of two bright elements imprinted on a dielectric substrate in the microwave region. The two bright elements are a circular ring resonator (CRR) and an asymmetric single-split rectangular resonator (ASRR). The structure exhibits a narrow transparency band in a wide absorption/reflection band through coupling between the two bright modes. We study the proposed structure through numerical simulation and experiment. We also test different orientations of the structure for possible application as an efficient frequency selective-band obscurant.
Citation
Sharhabeel Alyones, Al. V. Jelinek, Michael Granado, and Charles W. Bruce, "Selective-Band Metaparticle Based on Bright-Bright Mode Coupling for Obscuration Applications," Progress In Electromagnetics Research M, Vol. 42, 159-167, 2015.
doi:10.2528/PIERM15052802
References

1. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, 1998.
doi:10.1002/9783527618156

2. Alyones, S., C. W. Bruce, and A. K. Buin, "Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire," IEEE Trans. Antennas Propag., Vol. 55, 1856-1861, 2007.
doi:10.1109/TAP.2007.898579

3. Waterman, P. C., "Scattering, absorption and extinction by thin fibers," J. opt. Soc. Amer., Vol. 22, No. 11, 2430-2441, 2005.
doi:10.1364/JOSAA.22.002430

4. Alyones, S. and C. W. Bruce, "Electromagnetic scattering by finite conducting fiber: Limitation of a previous published code," Journal of Electromagnetic Waves And Applications, Vol. 25, No. 7, 1021-1030, 2011.
doi:10.1163/156939311795253948

5. Bruce, C. W. and S. Alyones, "Extinction efficiencies for metallic fibers in the infrared," Applied Optics, Vol. 48, 5095-5098, 2009.
doi:10.1364/AO.48.005095

6. Bruce, C. W. and S. Alyones, "Visible and infrared optical properties of stacked cone graphitic microtubes," Applied Optics, Vol. 51, No. 16, 3250, 2012.
doi:10.1364/AO.51.003250

7. Bruce, C. W., A. V. Jelinek, S. Wu, S. Alyones, and Q. S. Wang, "Millimeter-wavelength investigation of fibrous aerosol absorption and scattering properties," Applied Optics, Vol. 43, 6648-6655, 2004.
doi:10.1364/AO.43.006648

8. Willis, T. M. and H. Weil, "Disc scattering and absorption by an improved computational method," Applied Optics, Vol. 26, No. 18, 1987.
doi:10.1364/AO.26.003987

9. Shepherd, J. W. and A. R. Holt, "The scattering of electromagnetic radiation from finite dielectric circular cylinders," J. Phys. A, Vol. 16, 65, 1983.

10. Alyones, S., "Electromagnetically induced absorption in metamaterials in the infrared frequency," Progress In Electromagnetics Research Letters, Vol. 47, 19-25, 2014.
doi:10.2528/PIERL14050501

11. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, No. 4, 1103-1107, 2010.
doi:10.1021/nl902621d

12. Arif, E. Ç., A. Artar, M. Turkmen, A. A. Yanik, and H. Altug, "Plasmon induced transparency in cascaded π-shaped metamaterials," Optics Express, Vol. 19, No. 23, 22607-22618, 2011.
doi:10.1364/OE.19.022607

13. Li, Z., Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, "Manipulating the plasmon-induced transparency in terahertz metamaterials," Optics Express, Vol. 19, No. 9, 8912-8919, 2011.
doi:10.1364/OE.19.008912

14. Lu, Y., J. Y. Rhee, W. H. Jang, and Y. P. Lee, "Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance," Optics Express, Vol. 18, No. 20, 20912-20917, 2010.
doi:10.1364/OE.18.020912

15. Xu, H., Y. Lu, Y. P. Lee, and B. S. Ham, "Studies of electromagnetically induced transparency in metamaterials," Optics Express, Vol. 18, No. 17, 17736-17747, 2010.
doi:10.1364/OE.18.017736

16. Dong, Z.-G., H. Liu, M.-X. Xu, T. Li, S.-M.Wang, S.-N. Zhu, and X. Zhang, "Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars," Optics Express, Vol. 18, No. 17, 18229-18234, 2010.
doi:10.1364/OE.18.018229

17. Zhang, J., S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, "Electromagnetically induced transparency in metamaterials at near-infrared frequency," Optics Express, Vol. 18, No. 16, 17187-17192, 2010.
doi:10.1364/OE.18.017187

18. Liu, C., Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature, Vol. 409, No. 6819, 490-493, 2001.
doi:10.1038/35054017

19. Phillips, D. F., A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of light in atomic vapor," Phys. Rev. Lett., Vol. 86, No. 5, 783-786, 2001.
doi:10.1103/PhysRevLett.86.783

20. Anker, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonic nanosensors," Nat. Mater., Vol. 7, No. 6, 442-453, 2008.
doi:10.1038/nmat2162

21. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, No. 4, 1103-1107, 2010.
doi:10.1021/nl902621d

22. Jin, X.-R., J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K.W. Kim, H. S. Cheong, and W. H. Jang, "Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling," Optics Express, Vol. 19, No. 22, 21652-21657, 2011.
doi:10.1364/OE.19.021652

23. Wang, J., B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, "A novel planar metamaterial design for electromagnetically induced transparency and slow light," Optics Express, Vol. 21, No. 21, 25159-25166, 2013.
doi:10.1364/OE.21.025159

24. Ibraheem, A. I. A.-N., C. Jansen, and M. Koch, "High Q-factor metasurfaces based on miniaturized asymmetric single split resonators," Appl. Phys. Lett., Vol. 94, 153505, 2009.

25. Alyones, S., A. V. Jelinek, M. Granado, and C. W. Bruce, "Design of metaparticles as sharp frequency-selective obscurant aerosols," Progress In Electromagnetics Research M, Vol. 30, 141-152, 2013.
doi:10.2528/PIERM13020706

26. CST Microwave Studio, Sonnet Software Inc., http://www.CST.com.